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A B S T R A C T   

The moving shadows caused by wind turbines, referred to as “shadow flicker” (“SF”), are known to generate 
annoyance in a subset of the exposed population. However, the relationship between the level of modeled SF 
exposure and the population's perceived SF and SF annoyance is poorly understood. Improved understanding of 
SF exposure impacts could provide a basis for exposure thresholds and, in turn, potentially improve community 
acceptance of and experience with wind power projects. 

This study modeled SF exposure at nearly 35,000 residences across 61 wind projects in the United States, 747 
of which were also survey respondents. Using these results, we analyzed the factors that led to perceived SF and 
self-reported SF annoyance. We found that perceived SF is primarily an objective response to SF exposure, 
distance to the closest turbine, and whether the respondent moved in after the wind project was built. 
Conversely, SF annoyance was not significantly correlated with SF exposure. Rather, SF annoyance is primarily a 
subjective response to wind turbine aesthetics, annoyance to other anthropogenic sounds, level of education, and 
age of the respondent. 

We also examined regulations governing SF in the sample project areas and compared them to SF exposure in 
the surrounding population. Additionally, we found that noise limits could serve as a proxy for SF exposure, as 
90% of those exposed to wind turbine sound of no more than 45 dBA L1h had SF exposure of less than 8 h per year 
(a prototypical EU regulatory threshold).   

1. Introduction 

1.1. Background 

Targets to decarbonize the US electricity sector rely on increasing the 
installed capacity of wind energy in the United States from approxi-
mately 110 gigawatts (GW) today [1] to nearly 600 GW by 2035 [2]. 
Many European countries have similarly ambitious goals [3,4]. Meeting 
these targets could necessitate thousands of new wind projects and, 
therefore, many willing host communities. Several common annoy-
ances—such as opaque planning and approval processes, and sound, 
visual/aesthetic, and shadow flicker (SF) impacts [5]—have been 

identified by community members living near existing wind projects. 
These annoyances affect individuals living near existing wind projects 
and raise questions of distributive fairness. Concerns about these im-
pacts also influence a local community's attitudes toward newly pro-
posed wind projects [6]—affecting wind project permitting timelines 
and outcomes. To balance these competing goals, some communities 
have opted to enact highly restrictive siting ordinances or moratoria on 
wind projects until such concerns and impacts are better understood (e. 
g., recent US examples from Kansas [7] and Indiana [8]). While overly 
restrictive wind energy siting ordinances have been shown to increase 
electricity costs and emissions [9], ignoring social impacts could also 
result in negative societal outcomes. 

Abbreviations: AIC, Akaike Information Criterion; CI, Confidence Interval; dBA, Sound pressure level in A-weighted decibels; GW, Gigawatt; L1h, One- 
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NOAA, National Oceanic and Atmospheric Administration; OR, Odds Ratio; RPM, Rotations Per Minute; SF, Shadow Flicker; VIF, Variance Inflation Factor; 
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Careful analyses of the sound impact from turbines have been con-
ducted by multiple parties (e.g., in the United States [10], Canada [11], 
Europe [12], and Japan [13]). Similarly, the visual impact of wind 
projects has been widely researched [14–18], as have attitudes toward 
and annoyances from wind project planning processes [6,19,20]. 

Rarely, however, have perceived SF, exposure, or annoyance levels 
been the focus of rigorous research. Perhaps as a result of this research 
void, regulations around SF in the United States and in Europe are 
variable and unstandardized—if they exist at all. A better understanding 
of the magnitude, drivers, and potential mitigation strategies of SF 
annoyance is needed for the wind industry, policymakers, and potential 
host communities to better understand this concern and be able to 
properly regulate it, if desired. 

1.1.1. What is shadow flicker? 
Shadow flicker, or SF, is an effect of pulsating light and shadow 

caused by the sun shining through rotating wind turbine blades. The 
intensity of SF diminishes with increasing distance from a wind turbine, 
which means it is typically most noticeable near the wind turbine. The 
area where SF occurs is largest when the sun is relatively close to the 
horizon, thus it is most common in the morning and evening hours to the 
west and east of the turbine, respectively. Similarly, the area of impact is 
typically larger at higher latitudes, where the sun spends more time at 
lower angles from the horizon (i.e., at large solar zenith angles). SF is 
expressed as either the maximum number of hours/year or minutes/day. 
It is modeled either assuming the “worst case” (e.g., turbines always 
operating, no intervening clouds), or what is termed “real case” that 
considers mitigating factors related to meteorology and project opera-
tion. A detailed discussion of these models and methods is provided in 
Section 2.1.3. 

1.1.2. What is annoyance? 
Lindvall et al. [21] define annoyance as “a feeling of displeasure 

associated with any agent or condition believed to affect adversely an 
individual or group.” Lindvall et al. recognize that feelings of annoyance 
are not necessarily pathogenic and may or may not result in negative 
health consequences. Hübner et al. [22] go further to define “annoyance 
stress” by evaluating self-reported annoyance in the presence of addi-
tional stress indicators such as sleep disturbance, irritability, and coping 
responses. As such, there is a distinction between self-reported annoy-
ance and annoyance stress, in that the former could be considered an 
attitude while the latter may lead to health impacts. In this study, we 
focus on self-reported annoyance on a five-point scale, with the highest 
annoyance category being “very annoyed.” This is distinct from the 
highest category of annoyance stress of “strongly annoyed” [22]. 

1.1.3. Wind neighbor survey background 
Lawrence Berkeley National Laboratory's National Survey of Atti-

tudes of Wind Power Project Neighbors (“LBNL Neighbor Survey”) was 
conducted by many of the same authors as this paper [6,10,22,23]. This 
survey collected data in 2016. 

Hübner et al. [22] demonstrated that self-reported annoyance to SF, 
although lower than that of turbine noise, was similar to annoyance to 
traffic and more prevalent than annoyance to agricultural machinery, 
turbine lighting, or landscape changes.1 From this same survey data, we 
found that of those who could experience the effects, though, SF emoted 
a high negative reaction. Twenty percent of the 1705 respondents 
indicated they noticed SF on their property, and 7% reported being very 
annoyed by it. However, of those that experienced SF in their residence, 

approximately one-third reported being very annoyed. Further, wind 
project developers often rank SF as one of the top concerns of commu-
nities.2 However, the role of SF in the experience of neighbors of wind 
projects has not been well studied in the United States or abroad. 

Statutorily, there is no US national SF regulation, and regulatory 
limits on SF in states, counties, and towns vary or are often nonexistent 
[24,25]. Several countries have guidelines or standards, most of which 
use the same thresholds as or reference the German national guidelines 
for the evaluation of SF [24,26] (as will be discussed in Section 1.3 and 
Section 3.4.2). However, there are currently no international standards 
for how to model SF exposure levels around turbines. 

To examine how SF exposure affects perception and annoyance, we 
conducted a mixed-methodology (both quantitative and qualitative) 
study using surveys of people living around US wind turbines and 
combined this data with SF modeling. We modeled SF for 61 unique 
wind projects across 17 states and 50 counties. These sites included 
approximately 750 survey respondents and more than 34,000 additional 
homes (non-survey respondents) from the surrounding population 
within 2 km of a wind turbine, making this the largest SF dataset 
analyzed for perceived SF and annoyance that we are aware of. From 
respondents, we collected survey data on whether they perceived SF in 
their home and the degree to which they were annoyed by it. We also 
collected a suite of demographic characteristics and attitudes toward the 
nearby project. 

1.2. Research objectives 

The present analyses of modeled SF exposure and survey-reported 
annoyance were intended to investigate the following research 
objectives:  

1. Quantify SF exposure across a large and geographically diverse 
sample of residences to develop a general understanding of SF 
experienced in populations living near wind turbines.  

2. Use a mixed-method approach to examine the correlation between 
modeled SF exposure and individuals' reported levels of perceived SF 
and annoyance to help inform regulations in the United States and 
abroad.  

3. Create a model to predict individual perceived SF and SF annoyance 
to better understand the magnitude, drivers, and potential mitigation 
strategies for SF impacts. 

1.3. Previous shadow flicker research 

As early as 1984, SF from turbines was recognized for its potential to 
be an adverse community impact. Verkuijlen and Westra [27] found that 
to avoid nuisance, the SF frequency should remain below 2.5 Hertz (Hz) 
(50 rotations per minute [RPM] for a three-bladed wind turbine). These 
conclusions were primarily based on previous research related to the 
onset of epileptic, nausea, and dizziness symptoms [28]. However, the 
authors conceded that the prior literature was not specific to wind tur-
bines, and that further study was needed. In a later study specific to wind 
turbines, Harding et al. confirmed that to protect against epileptic im-
pacts, wind turbines should not exceed 60 RPM [28]. For context, 
modern utility-scale wind turbines rotate at less than one-third of this 
rate; the fleetwide simple average for US turbines from 1998 to 2019 is 
17.4 RPM.3 

In 1999, Pohl et al. [29] conducted a survey of 223 residents in Ger-
many who lived around wind projects, to determine the impacts of SF and 
to examine whether the proposed regional SF limit was reasonable with 
respect to impacts. They found that SF exposure alone did not explain SF 

1 However, with respect to Annoyance Stress, 0.2% were strongly annoyed by 
SF compared with 1.1% to noise, 1.2% to lighting, and 1.5% to landscape 
change in the US sample. 

2 Collected via conversations with various developers.  
3 Derived from an internal Lawrence Berkeley National Laboratory database 

(not capacity weighted). 
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annoyance. However, when adding in weighing to account for SF sensi-
tivity of different types of rooms and SF exposure of those rooms in in-
dividual homes, they found a clear linear relationship between this 
weighted shadow duration and SF annoyance. They also found that 
certain residents with high levels of exposure “spent less time in the 
shaded living spaces and in open spaces around the house and felt…ac-
tivities indoors and outdoors as well as in their leisure time were severely 
disturbed as compared to people who were not exposed to shadows” 
(translation). They concluded that the proposed limit of 30 h of SF per 
year was likely to prevent most cases of substantially annoyed in-
dividuals. The hours estimate was based on a model of purely astro-
nomical shading duration (“worst case”), which gives an upper limit to 
the duration of periodic shading to which a dwelling is exposed. This 
model can then be adjusted down by meteorological and turbine opera-
tion corrections to mimic actual operating conditions (“real case”). Ger-
many later adopted the 30 h/year (and 30 min/day) worst case and an 8 
h/year real case limits for its guidelines for wind projects [26]. 

Koppen et al. summarized US and EU SF standards in 2017 and found 
that when SF limits existed, the 30 h/year (and 30 min/day) limit was 
consistently applied [24]. Many of these in the EU were expressed as a 
worst case. They observed real case limits in some jurisdictions as well (e. 
g., Germany, Australia, Belgium, Denmark, and Sweden), with maximums 
of either 8 or 10 h/year (and 8 to 10 min/day). This suggests a worst-to- 
real-case relationship of roughly 3 to 1 and a rough equivalent between 
hours/year and maximum minutes/day. The metric in the three US ex-
amples cited did not differentiate between real or worst-case metrics. 

In one of the largest and most comprehensive studies of its kind to 
date, Health Canada surveyed 1,238 people living between 0.25 km and 
11.22 km from existing wind turbines in two Canadian provinces [30]. 
Among other important findings, the researchers found that SF expo-
sure, expressed in maximum minutes per day, improved the ability to 
estimate high annoyance from wind turbines when combined with other 
factors such as noise, concern with physical safety, and noise sensitivity. 
For the lowest level of wind turbine SF exposure (0 to 10 min/day worst 
case), 3.8% of the population was highly annoyed by SF, while of those 
experiencing the highest level of exposure (>30 min/day worst case), 
21.1% were highly annoyed by SF. However, when modeling SF without 
additional observable and subjective variables, the predictive strength 
of the model was weak (R2 of 0.1). The authors concluded, “In addition 
to addressing some of the aforementioned shortcomings, future research 
may also benefit by considering variables that were not addressed in the 
current study. These may include, but not be limited to, personality 
traits, attitudes toward WTs [wind turbines], and the level of community 
engagement between WT developers and the community.” This research 
addresses some of these variables. 

Frieberg et al. [31] conducted a systematic literature review on the 
influence of wind turbine visibility, including indirect effects such as SF, 
on health. They recommended that additional high-quality research be 
conducted on the subject, including, “the combined impact of visual and 
audible aspects of wind turbines on residents' health, and the complex 
interdependency with other variables (e.g., attitude toward wind en-
ergy, economic benefit) should be taken into consideration.” This 
research attempts to address some of these areas of study. 

2. Data and methods 

2.1. Data 

A wide range of data were collected and generated for this research 
effort. The following sections describe these data in additional detail. 
One of the key variables was modeled duration of SF exposure at each 
home (Section 2.1.3). The inputs for those models included the 
following:  

• Wind turbine and project data (Section 2.1.1).  
• Residence (i.e., receiver) locations (Section 2.1.2).  

• Topography and land cover (Section 2.1.3).  
• Meteorology, including wind speed, wind direction, and cloud cover 

(Section 2.1.3). 

Those modeled SF data were, in turn, key inputs to both the 
perceived SF and SF annoyance models (Section 2.2.2). The models 
required survey response data such as demographics, self-reported 
perceived SF and SF annoyance levels, and other response data (Sec-
tion 2.1.4). Finally, we collected data on SF ordinances (whether they 
existed, and if so, the relevant limit) for all 50 counties represented in 
our analysis (Section 2.1.5). 

2.1.1. Wind turbine and project data 
The 61 wind projects used for modeling encompassed 2,982 wind 

turbines spread across 17 US states and 50 counties (Fig. 1). Data on 
each of these wind turbines were obtained from the US Wind Turbine 
Database (USWTDB) [1,32]. These data included turbine location (i.e., 
latitude/longitude), rated capacity, hub height, rotor diameter, manu-
facturer, model, total height, total project capacity, and number of 
turbines in the project. Table 1 shows summary statistics on the wind 
turbines. 

Additional turbine data that are not available from the 
USWTDB—such as power curves for operational profiles—were applied 
from data built into the SF modeling software described in Section 2.1.3. 

The wind projects included in this analysis ranged from a 1.5-mega-
watt (MW) wind project with a single wind turbine to a 515 MW project 
with 222 turbines. The median project capacity and number of turbines 
were 180 MW and 87, respectively. 

2.1.2. Receiver (residence) data 
The residence location data were obtained from CoreLogic.4 Data 

comprised all single-family homes, condominiums, duplexes, and 
apartments with complete addresses located within 2 km of one of the 61 
wind projects. Initially, this yielded a sample of 46,175 receivers (i.e., 
residences). 

A variety of quality control measures were used to verify the receiver 
location data, including removing duplicate location records, validating 
via an alternative source of location data, and visually inspecting using 
aerial imagery.5 Of the total sample, we found 34,117 unique locations 
and 12,058 duplicates. Some of these duplicates were multi-family 
housing units, but most were determined to be inaccurately geocoded 
and grouped into centroids of subdivisions or blocks. The duplicated 
locations were evaluated for geospatial accuracy. We visually examined 
all locations with >100 receivers using satellite imagery (n = 9), as well 
as a random sample of 25 additional duplicate sites, and the 100 loca-
tions with the highest modeled SF using satellite imagery. We matched 
each receiver location to the nearest “building” location from Microsoft's 
open-source building footprint data [33], flagging any locations found 
to be more than 40 m from the nearest structure. If the flagged location 
was a survey receptor, it was visually inspected with satellite imagery 
and then relocated (n = 157). The remaining (non-survey respondent) 
receiver locations were removed from the analysis. We additionally 
removed excess duplicate receivers for locations with 10 or more records 
(keeping any survey respondents, if applicable). This process resulted in 
a final set of 34,940 receivers, which included the 747 survey 
respondents. 

2.1.3. Modeled shadow flicker data 
In this study, two aspects of SF were quantified—the annual number 

of SF hours (and daily SF minutes) at each home and their distributions 

4 See https://www.corelogic.com/find/property-data-solutions/ for more 
info on their data products.  

5 All survey respondents' residence locations were manually verified with 
aerial photography. 
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by time of day and over the year. These were modeled using the 
SHADOW module in windPRO Version 3.3. 

Predicting SF at residences surrounding a wind project is achieved 
through calculations of sun angles at different times of day and periods 
of a year at a given latitude; this is done while accounting for turbines' 
heights and intervening topography. This enables estimates of the 
maximum cumulative number of hours in a year (or hours per day) that 
a home will experience SF. SF can be modeled (and, for that matter, 
regulated) in terms of “real” or “worst” case. Worst case modeling is the 
astronomical maximum SF, assuming turbines are always operating (i.e., 
rotating) and there is no cloud cover. Real case modeling includes 
meteorology (e.g., cloud cover [34]), turbine operational factors (e.g., 
downtime), wind speed and direction [35], and potentially land cover 
[34], each of which can reduce worst-case levels. Real case modeling, 
therefore, results in fewer hours of calculated SF, all else being equal. We 
posit the real case model is a better approximation of actual conditions 
experienced by wind project neighbors, and therefore it is the metric we 
primarily use in the analysis. 

The model outputs the periods of every SF event for each residence. 
Using these data, we estimated other parameters like maximum number 
of SF minutes in any day, as well as seasonality and time-of-day impacts. 

The most SF occurs close to a wind turbine and (in the northern 
hemisphere) primarily to the northeast and northwest of a turbine, and 
to a lesser extent, to the north (Fig. 2A). When multiple turbines are 
between the sun and a home, a combination of SF from those turbines is 
possible (Fig. 2B). The farther one moves away from a turbine, the 

greater the decrease in SF intensity. At 15 rotor diameters from a wind 
turbine (roughly 1.3 km for the median turbine in this analysis) the SF 
intensity is diffuse enough that little observable light flicker occurs. 
Therefore, for this study, SF beyond that limit was not modeled. 

Physical obstructions from structures and land cover such as trees or 
other vegetation were not included in the SF models. Although these ob-
jects can significantly reduce SF at a shadow receiver, reliable high- 
resolution data were not consistently available across the full set of 
modeling areas. To test the potential model impacts of land cover, though, 
six of the study's modeling areas—those which had survey respondent 
shadow receivers receiving high amounts of annual SF hours—were 
modeled again with the 30-m gridded 2011 National Land Cover [34] 
included. Most receivers were unaffected: 94% of receivers with modeled 
SF had the same annual SF hours for the land-cover and no-land-cover 
scenarios. Because we found most receivers were unaffected by land 
cover's inclusion, and because of the relatively coarse grid of obstructions, 
we did not otherwise include the effect of land cover in this study. 

2.1.4. Survey data 
Survey data were obtained from the LBNL Neighbor Survey [20]. 

This survey asked respondents 50 questions about their experience 
living in proximity to existing utility-scale wind energy projects. Details 
on that survey's methods, including sample selection, the survey in-
strument, and multimodal (phone, mail, internet) data collection, are 
reported at length elsewhere [6,10,22,23], and therefore are only briefly 
discussed here. 

The survey frame encompassed all US residences within 8 km of any 
utility-scale wind turbine (≥1.5 MW in nameplate capacity) constructed 
through the end of 2015. This resulted in a population of 1.29 million 
residences around 604 wind projects, comprising 29,848 individual tur-
bines. To ensure an adequate sample of residents most likely to experience 
SF and other impacts, the sample was stratified and some oversampling 
was conducted—most notably among residences closest to turbines (<1.6 
km). Oversampling also occurred at 15 wind project sites (representing a 
diversity of turbine models, geographies, project sizes, population den-
sities, and topographies) where sound modeling was initially planned; 
these sites also formed the basis for the present SF analysis. After data 
collection, we selected 15 additional wind project sites for a total of 30 
sites, that included 61 wind projects, which were used for the corre-
sponding sound modeling analysis [10] and this SF analysis. 

Fig. 1. Map of wind projects used for SF analysis.  

Table 1 
Descriptive statistics of all wind turbines included in the SF models (n = 2982 
across 61 projects, not capacity weighted).  

Metric Minimum Median Maximum Mean Standard 
deviation 

Hub height (m) 70 80 100 85.3 8.5 
Rotor diameter 

(m) 
77 83 117 89.3 10.1 

Turbine capacity 
(MW) 

1.5 1.65 2.5 1.8 0.3 

# of turbines in 
project 

1 87 222 48.9 52.1 

Project size 
(MW) 

1.5 180 515 87.0 96.3  
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Survey data collection occurred in 2016. Ultimately, a total of 1705 
valid responses were received from residents living within 8 km of 250 
US wind projects, with the majority (1121) of respondents living within 
1.6 km of a turbine. For this study, SF exposure was modeled for a total 
of 747 survey respondents living within 2 km of 61 wind projects. 

The survey data provided basic demographic data (e.g., age, sex, 
education level) and data about respondents' potential relationship with 
the local wind project (e.g., whether they received compensation), and 
self-reported data on perceived SF and level of SF annoyance. 

For perceived SF, respondents were asked if “the blades of a wind 
turbine ever cast a shadow on your property, outside your home?” An 
affirmative answer to this question triggered the follow-up of “Do the 
blades of a wind turbine ever cast a shadow in your home?” We use the 
latter response as our dependent variable, for several reasons. First, SF is 
regulated at homes. Second, a home is a single point rather than a large 
area. Finally, most human exposure is in or around a home. 

To determine SF annoyance, respondents were asked: “To what extent 
do you feel annoyed by the following effects of the local wind project?” 
Where “shadow flicker” was listed as an option, they could respond “Not at 
all,” “Slightly,” “Somewhat,” “Moderately,” “Very,” or “Don't Know.” 

2.1.5. Shadow flicker ordinance data 
Wind energy siting ordinances were collected and reviewed for all 50 

US counties represented in this analysis. From these ordinances, we 
collected data on whether SF exposure was regulated, and if so, what the 
SF limit was, what metric was used (i.e., real or worst case, hours per 
year or minutes per day), and what location(s) the limit applied to (e.g., 
“non-participating dwelling”). These data were used to contextualize 
our discussion around SF exposure. 

2.2. Analysis methods 

This section describes the analysis methods. We briefly discuss the 
perceived SF and SF annoyance (dependent variable) response cate-
gories and the regression models used to validate and predict them with 
a variety of covariates (i.e., controlling variables). 

2.2.1. Dependent variable categories 
Two dependent variables are considered in the regression model 

analysis: perceived SF and SF annoyance.6 These were created by 

combining responses from the survey (Section 2.1.4) and modeled 
annual real-case SF exposure (Section 2.1.3) to represent a dose- 
response relationship of perceived SF and SF annoyance. The response 
groups for perceived SF include “no perceived SF in home” and 
“perceived SF in home.” The former includes two survey response levels: 
“no perceived SF” and “perceived SF on property but not in home.” For 
SF annoyance, the respondents were categorized as “not,” “mildly,” or 
“very” annoyed. “Mildly” annoyed includes the three survey response 
levels: “slightly,” “somewhat,” and “moderately.” 

2.2.2. Regression models 
To examine the relationships between various covariates and the 

dependent variable (perceived SF and SF annoyance, with perceived SF 
[“PSF”] used in this example), we assume the following relationship: 

PSFi = f (modeled SF,respondent characteristics,wind project characteristics)
(1) 

Specifically, we estimate the following basic logistic regression 
model.7 

PSFi = α + β1(MSFi) +
∑

a
β2(Ri) +

∑

a
β3(WPi) + εi (2)  

where: 

PSFi represents perceived SF in the home for respondent I (binary 
yes/no). 
α is the constant or intercept across the full sample. 
MSFi is the modeled SF for respondent i, (hours/year real case). 
Ri is a vector of characteristics for respondent i, including their age, 
gender, if they attended college, and if they received compensation 
from the wind project. 
WPi is a vector of characteristics of the nearby wind project for 
respondent i, including the size of the project, the distance the 
nearest turbine was from the respondent, and if it was oversampled 
for the survey or not.8 

εi is a random disturbance term for respondent i. 

Fig. 2. Example of annual SF hours around (A) a single wind turbine and (B) a string of wind turbines.  

6 For a survey respondent to be included in both models, their homes must 
have had at least 1 min per year of worst case (astronomical) SF. In addition, for 
the annoyance model, only those who reported observing SF in their home were 
included. 

7 R: A language and environment for statistical computing (Version 4.0.2) 
was used for the statistical analysis herein. https://www.R-project.org/.  

8 The two categories of oversampling are dominant or discrete. The former 
refers to under-sampling because the project was located in a high population 
area, while the latter refers to oversampling because it was the focus of addi-
tional detailed analyses (like this study). 
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The model is then repeated using SF annoyance (i.e., SFAi) as the 
dependent variable. In either case, the vector of parameter estimates β1, 
β2, and β3 are used to determine the odds ratio of each variable, calcu-
lated as eβ. The odds ratio signifies that a one-unit change in a covariate 
will lead to a decrease (values between 0 and <1) or an increase (values 
> 1) in the likelihood that a respondent will move to the next response 
level. For example, for perceived SF, it might indicate a change from not 
perceiving SF in their home to perceiving SF in their home, or for SF 
annoyance, from being “not” to “mildly” annoyed or “mildly” to “very” 
annoyed. When the range of the odds ratio's 95% confidence interval 
(CI) is completely less than one (representing lower odds of moving to 
the next response level) or completely greater than one (representing 
higher odds of moving to the next response level), the variable is 
considered a significant predictor; this is equivalent to the standard 
method of assigning variable significance for variables with a p-value of 
<0.05. 

Because the units of the various covariates differ, we analyze the 
strength of the correlations via the Akaike information criterion (AIC). 
The AIC represents the impact on the model fit when it is removed from 
the regression. A higher AIC value indicates a stronger relationship be-
tween the covariate and the dependent variable. 

The overall fit of the model is measured using Nagelkerke's R2 (RN
2), 

which is a “pseudo-R2” used as an index of overall model quality [36]. It 
is calculated as a measure of the improvement of the log likelihood of the 
model compared to that of a null model. To ensure the independence of 
the variables included in each model, multi-collinearity is assessed with 
the variance inflation factor (VIF) [37]; the maximum VIF for each 

model is reported with the results in Section 3.3. Typically, a VIF above 
four warrants further investigation into the collinearity among model 
variables. 

To indicate the efficacy of each model in predicting responses, the 
proportion of responses that the regression model correctly predicts is 
determined using a “leave-one-out cross validation” procedure. For each 
sample, the regression model is calculated without one respondent. 
Then, using the model's results, we predict the missing response (either 
PSFi or SFAi), repeating for each respondent, and compare those pre-
dicted results to those of the respondents. 

Three parallel models for each dependent variable are estimated, 
each with progressively more covariates: Basic, Observable, and Sub-
jective. These covariates are shown in Table 2, and are grouped into 
functional classification groups. Column 3 denotes which of the three 
models the covariates are used in. The Basic model (“B”) contains all 
stratification, controlling, relationship, and stimulus variables. The 
Observable model (“O”) adds wind turbine and project characteristics 
covariates specific to each individual respondent (i.e., objective vari-
ables). The Subjective model (“S”) expands the scope of covariates to 
personal variables, including the degree to which respondents liked the 
look of the nearby wind project, and their general annoyance to com-
munity nuisances. In addition to the model and covariate distribution, 
Table 2 also contains summary statistics for the covariates, means for 
continuous variables, and percentages for categorical variables. 

Table 2 
Regression model variable summary.  

Group Variable Model* Data 
type†

Sample mean or percentage** (SD) Description, including categories (where 
applicable)††

Survey 
sample 
(n = 717)‡

Perceived SF 
model 
(n = 328) 

SF annoyance 
model 
(n = 283) 

Dependent 
variables 

Perceived SF B, O, S C 65/31/4 44/56 16/84 No SF in home/SF in home/Unknown (where 
applicable) 

SF annoyance B, O, S C 15/13/10/ 
62 

27/23/17/33 41/34/25 Not at all/Mildly/Very/Unknown or Other (where 
applicable) 

Stratification Distance bin B, O, S C 57/39/5‡‡ 77/23 88/12 Distance from nearest turbine: 0–0.8 km/0.8–1.6 
km/1.6 to 4.8 km‡‡

Large project B, O, S B 61% 76% 78% <10 turbines (0), >10 turbines (1) 
Controlling College B, O, S B 44% 41% 42% No college degree (0), College degree (1) 

Female B, O, S B 56% 56% 54% Not female (0), Female (1) 
Age B, O, S N 56 (14.9) 57.7 (15.2) 57.8 (13.7) Respondent age (years) 

Relationship Project 
participation 

B, O, S C 74/16/6/4 64/25/10 56/30/13 Non-participant/Compensated (not host)/Host and 
Compensated 

Stimulus SF B, O, S N 6.1 (9.9) 11.1 (11.3) 13.0 (12.1) Real-case SF hours per year 
Turbine Rotor diameter O, S N 90.3 (8.7) 92 (8.8) 91.9 (8.5) Nearest turbine rotor diameter (meters) 

Hub height O, S N 86.6 (9.2) 88.4 (9.5) 89.1 (9.5) Nearest turbine hub height (meters) 
Tip speed O, S N 76.5 (6.5) 77.2 (6.7) 76.9 (6.8) Velocity of tip of wind turbine blade at rated RPM 

(m/s) 
Project age O, S N 5.2 (1.7) 4.8 (1.3) 4.8 (1.3) Project age in years at time of survey (2016)*** 

Individual Turbines in view O, S N 19.3 (39.4) 26.5 (42.8) 28.3 (42.3) Number of turbines in view from residence and 
property 

Move in after 
project 

O, S B 20% 20% 15% No (0), Yes (1) 

Personal Like look (visual) S C 12/24/60/3 11/29/60 10/34/56 Neutral/No/Yes/Unknown (where applicable) 
General 
annoyance 

S N 0.55 (0.72) 0.47 (0.66) 0.45 (0.64) Average annoyance to typical community stressors†††

* Models in which variables are included: “B” = Basic, “O” = Observable, “S” = Subjective. 
† Data Types: “B” = Binary, “C” = Categorical, “N” = Numerical. 
‡ Not all survey sample variables have 717 valid responses, but missing entries are de minimus to the means presented. 
** Distribution (%) of each response category is provided for each categorical (“C”) variable, or percent “Yes” for binary variables. Standard deviation (“SD”) 

provided in parentheses following the mean, where applicable. 
†† Bolded values indicate the omitted reference level to which other categories are compared. Some categories are populated in one sample (e.g., survey) and not in 

others (e.g., annoyance model), therefore percentages are only shown where applicable. 
‡‡ Distance bin of 1.6 to 4.8 km not represented in the regression models. 
*** Newest project in sample was built in 2012, and thus minimum age is 4 years. 
††† “Not at all annoyed” (0) to “Very annoyed” (4) by “Motor vehicle traffic, including cars and trucks,” “Street lights,” “Agricultural machinery,” and “Lawnmowers, 

snow or leaf blowers.” 
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3. Results and discussion 

3.1. Population exposure to shadow flicker 

This research utilized a large population with modeled SF and a 
robust sample of those that perceive SF across a wide range of modeled 
SF hours. 

3.1.1. Full sample population 
Fig. 3 shows the number of receivers (homes) in our sample with 

(dark grey) and without (orange) modeled SF as a function of distance to 
the nearest wind turbine. The total number of residences in the sample 
increases with increasing distance from the nearest turbine. The total 
number of residences with any modeled SF (grey bars) peaks near 1000 
m to the nearest turbine because modeled SF fades considerably beyond 
that distance.9 The proportion of the sample population with modeled 
SF (green line) is highest at distances closest to the turbine. Greater than 
50% of the sample residences within 550 m of the nearest turbine have 
some modeled SF hours. 

3.1.2. Sample with modeled shadow flicker 
Fig. 4 includes only those receivers with modeled SF. It shows the 

different levels of modeled SF hours per year by distance from the 
nearest turbine producing SF. (Note that this may differ from the 
“nearest turbine” as used in Fig. 3). It also includes the percentage of the 
sample that has >8 h/year real-case SF (blue line)—a maximum limit 
used in some SF standards (see discussion in Section 1.3). A majority of 
residences within 750 m were modeled with real case SF exposure above 
8 h per year. Within 500 m, 90% have more than 8 h of modeled real 
case annual SF. 

3.2. Survey respondent shadow flicker summary 

This section presents survey responses used to build perceived SF and 
SF annoyance categories and compares them to modeled annual SF 
exposure. 

3.2.1. Perceived shadow flicker 
Fig. 5 presents the distribution of perceived SF among survey re-

spondents. Each bar represents the proportion of respondents in each 
response group and modeled SF exposure category. The width of each 
bar is proportional to the sample size in that category. 

Fig. 5A provides the full survey sample of SF receivers, while Fig. 5B 
presents only those with some modeled SF exposure. Both include three 
respondent categories: perceived SF in home, perceived SF on property, 
and no perceived SF. The proportion of respondents that notice SF in 
their homes increases as the number of annual hours increase. This is 
expected, as the more SF a home is modeled to have, the more likely it is 
that the resident will report perceiving SF in their home. For individuals 
with some modeled SF (>0) at their home, roughly 15% report that they 
can perceive SF only on their property but not in their home (shown in 
Fig. 5 as “On Property”). This percentage is consistent regardless of SF 
exposure levels. 

Of those that have modeled SF in the range of 4 to 8 h/year real case, 
only about half (52%) reported perceiving SF in their home. We believe 
that this disparity is due to other factors that are not considered in this 
study that mitigate SF exposure, particularly land cover, the use of 
rooms that may be exposed to the SF, whether windows face the wind 
turbines, draperies and other window covers, and whether the occu-
pants are home during the SF events. 

3.2.2. Shadow flicker annoyance 
Fig. 6 presents parallel results for reported annoyance to SF. Fig. 6A 

appears to indicate that the distribution of SF annoyance increases with 
SF exposure across all respondents. However, it is notable that roughly 
half of the respondents in the figure had no modeled SF exposure (and 
thus cannot be annoyed by SF in their home). When limited to only 
respondents with some modeled SF (Fig. 6B), the distributions between 
annoyance levels do not vary appreciably across exposure levels. This 
suggests two things: 1) the apparent increase in SF annoyance for all 
respondents is driven by the inclusion of the do-not-perceive-SF-in-their- 
home category; and 2) there is an insignificant relationship between 
modeled SF and SF annoyance in the sample once they are excluded. 
This was tested directly and is described in Section 3.3. 

3.2.3. Distribution of responses, by exposure 
To directly compare SF exposure to perceived SF and SF annoyance, 

Fig. 7 shows box plots representing all survey respondents. The “box” 
provides the 75th, 50th (median [dark line]), and 25th percentile of the 

Fig. 3. Distribution of modeled SF by distancea within the full population sample (n = 34,940). The green line indicates the proportion of the sample population with 
modeled SF for each distance group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
aReceivers are binned into 100 m groups, centered on the interval (e.g., the 500 m bin is 450 m to 550 m). 

9 The decrease in “without modeled SF” beyond 1,900 m for Figs. 3 and 4 is a 
result of not modeling SF beyond distances 15 times total turbine height (see 
Section 2.1.3). 
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distribution of the sample. The “tails” on the boxes represent the range 
of 95% of the data. The plot reaffirms that the prevalence of perceived SF 
in one's home increases with modeled SF exposure. However, the 
number of modeled SF hours alone is insufficient to explain reported SF 
annoyance among survey respondents. 

3.3. Regression results 

The results from the three (Basic, Observable, and Subjective) lo-
gistic regression (logit) models for perceived SF and SF annoyance, as 
described in Section 2.2.2 and Table 2, are presented in Table 3 and 
Table 4.10 

3.3.1. Perceived shadow flicker 
The basic perceived SF model (Table 3) correctly predicted perceived 

SF for 68% (see “Total Proportion Correct”) of respondents, with an RN
2 

of 0.32. With the Observable model, the predictive power of the model 
improves, with 71% of responses correctly predicted and an increase of 
RN

2 to 0.38. Although adding subjective variables slightly improved the 
RN

2 to 0.41, the predictive power of the model decreased (though 
insignificantly) to 70%. This suggests that perceived SF prediction is not 
significantly improved over the Observable model by adding subjective 
variables. All models correctly predicted at least 75% of the respondents 
that perceived SF in their home (see the green bordered portions of the 
bar graphs at the top of Table 3) and about 60% of respondents that did 
not perceive SF in their home. 

Turning to the regression results, the real-case annual SF hours is the 
strongest predictor of perceived SF, with an AIC about four times greater 
than the next covariate (22.6 vs. 7.6). Across all three models, a one- 
hour increase in annual real-case wind turbine SF is associated with 
an increase in the odds of perceiving SF in the home by 12% to 13%. 
Logically, quantifiable SF exposure should be a good predictor of 
whether a respondent perceives SF or not. The model indicates that, 

indeed, a significant dose-response relationship is present. Further, re-
spondents farther than 800 m (~0.5 miles) from the nearest wind tur-
bine had 65% to 66% lower odds of perceiving SF than respondents 
within 800 m (see the Distance Bin variable in Table 3). The odds of 
perceiving SF in one's home were at least 75% lower for those who 
moved into the area after the project was built compared with those who 
lived in the area prior to the project's construction (see the move-in-after 
variable in Table 3). Project participation did not significantly 
contribute to the prediction of perceived SF in one's home. 

3.3.2. Shadow flicker annoyance 
The SF annoyance results (Table 4) differ substantially from those of 

perceived SF. For SF annoyance, the Basic and Observable models are 
relatively weak predictive models, with RN

2 < 0.27 and less than 49% of 
the total responses correctly predicted. Adding subjective variables 
considerably increases the model's effectiveness, increasing RN

2 to 0.58 
and correctly predicting 65% of the responses overall. 

In the Basic SF annoyance model, respondent participation in the 
project is the most influential predictor (AIC = 25.1); participants had 
about 81% lower odds of being annoyed by SF than non-participants. 
Annoyance was comparable among project participants that hosted 
wind turbines on their properties and those that were compensated 
without hosting a turbine, relative to non-participants. After project 
participation, a respondent's college education (AIC = 6.6) was the 
strongest predictor of SF annoyance; respondents who had completed 
college had 57% lower odds of moving to a higher annoyance level than 
those that did not attend college. Modeled SF exposure was the third- 
strongest correlate: a one-hour annual increase in real case SF was 
associated with a 4% increase in the odds of SF annoyance. Age (AIC =
6.0) was the fourth-strongest predictor in the Basic model, with 
decreased odds of SF annoyance among older respondents. 

Adding objective variables did not increase predictive strength of the 
model (see “Observable” model). In fact, none of the observable vari-

Fig. 4. Modeled real-case SF hours per year 
bins,a by distanceb from the nearest flicker- 
producing turbine for receivers with some 
modeled SF (n = 4825). The blue line in-
dicates the proportion over 8 h/year.c (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.) 
aSF ranges are open (“(“) on the left and 
closed (“]”) on the right, i.e., (4, 8] is 4 < x 
≤ 8. 
bReceivers are binned into 100 m groups, 
centered on the interval (e.g., the 500 m bin 
is 450 m to 550 m). 
cThe decrease in “without modeled SF” 
beyond 1,900 meters is a result of not 
modeling SF beyond distances 15 times total 
turbine height (see Section 2.1.3). The small 
increase in SF level for respondents at 1,600 
m is due to a small sample size (n = 8); one 
of these receivers had three distinct wind 
turbines contributing SF annually. Of the 
three wind turbines, the farthest turbine at 
1,620 meters contributed the most SF; the 
other two turbines contributing SF were 
within 800 meters of the receiver.   

10 Although we present multivariate correlation results in the regression ta-
bles, we did examine univariate correlations as well. Contact the authors for 
more information on those. 
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ables were significant in predicting SF annoyance. In contrast, all Sub-
jective model variables were significant in predicting the SF annoyance 
outcomes. The respondents' stated attitudes toward the aesthetics of the 

Fig. 7. Box plots of SF exposure by respondent reported perceived SF and SF annoyance (perceived SF: n = 717; SF annoyance: n = 260).  

Fig. 5. Distribution of perceived flicker by real-case SF for (A) all respondents (n = 717) and (B) only respondents with modeled SF (n = 393).  

Fig. 6. Distribution of SF annoyance by Real Case SF for (A) all respondents (n = 717) and (B) only respondents with modeled SF (n = 260).  
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local wind project (i.e., if they did or did not like the look of it vs. a 
neutral response) was by far the strongest correlate (AIC = 62.3).11 The 
respondents' general annoyance to environmental nuisances (AIC =
9.7), if they attended college (AIC = 9.2), their age (AIC = 6.9), the age 
of the nearest wind project (AIC = 4.3), and if the respondent was 
compensated but not a host were all statistically significant. With sub-
jective variables considered, modeled SF exposure was not a statistically 
significant predictor of SF annoyance. The Subjective model correctly 
predicted 65% of annoyance levels overall, 73% of the very annoyed 
responses, and 79% of not-at-all-annoyed responses. 

Moving in after the project was built was found to be a strong pre-
dictor of perceived SF in this study and in previous literature for: atti-
tudes toward wind projects [23]; perceptions of the planning process 
[6]; and both the audibility of wind turbine noise in the home and wind 
turbine noise annoyance [10]. However, we found moving in after a 
project was built was not significantly correlated with SF annoyance. 

In summary, although this study found a strong relationship between 
modeled SF exposure and perceived SF reported by survey respondents, 
the relationship between SF exposure and SF annoyance is much weaker, 

indicating other factors are likely at play that cause annoyance.12 

3.4. Exposure to shadow flicker compared with existing guidelines and 
sound levels 

The combined survey data, SF exposure data, and data on US county- 
level SF exposure limits allow us to examine other relationships. We first 
calculate a ratio between worst and real-case SF estimates and compare 
that to the 3:1 ratio commonly used in EU SF standards (see Section 1.3). 
We then assess modeled exposure against the most commonly enforced 
SF limits in our sample (see Section 2.1.5) and examine them relative to 
project participation. Finally, we look at the relationship between SF 
exposure and sound exposure by comparing SF exposure categories and 
modeled sound-level categories. 

3.4.1. US state- and county-level shadow flicker ordinances 
The data from wind energy siting ordinances for all 50 US counties 

represented in this analysis were revealing: most counties in this anal-
ysis (62%) do not enforce any limit on SF exposure. Two states (New 
York and Ohio) have enacted statewide SF limits (30 h/year), and only 
13 other county-level ordinances were identified (10 at 30 h/year, 2 at 0 
h/year, and 1 at 40 h/year). Of the 15 authorities that do specify any 
limit on SF exposure, 30 h/year was by far the most common limit. 

Table 3 
Perceived SF regression results.  

(n = 328) Basic Observable Subjective 

Nagelkerke R2 0.32 0.38 0.41 

Area under the curve (AUC) 0.67 0.7 0.69 

Maximum VIF 1.85 2.13 2.92 

Leave-one-out 
Cross validation results 

Proportion correctly predicted   

Total proportion correct 0.68 0.71 0.70 

Variable ORy (95% CI) ΔAIC ORy (95% CI) ΔAIC ORy (95% CI) ΔAIC 

Distance bin  0.35 (0.178,0.678)  7.6  0.35 (0.171,0.699)  6.7  0.34 (0.167,0.699)  6.6 
Large project  2.30 (1.039,5.07)  2.2  2.22 (0.907,5.414)  1.1  1.98 (0.795,4.93)  0.2 
College  0.86 (0.507,1.47)  − 1.7  0.93 (0.533,1.629)  − 1.9  0.95 (0.536,1.667)  − 2.0 
Female  1.10 (0.655,1.848)  − 1.9  1.05 (0.605,1.806)  − 2.0  0.98 (0.563,1.716)  − 2.0 
Age  1.00 (0.983,1.018)  − 2.0  0.99 (0.974,1.011)  − 1.4  0.99 (0.974,1.012)  − 1.5 
Project participation*,a    − 3.0    − 3.0    − 3.5 

- Compensated: not a host  1.12 (0.59,2.13)   0.99 (0.501,1.962)   1.23 (0.606,2.501)  
- Compensated: turbine host  0.67 (0.271,1.671)   0.62 (0.235,1.627)   0.88 (0.318,2.409)  

SF (real case, hours per year)  1.12 (1.068,1.165)  22.6  1.13 (1.078,1.179)  25.7  1.13 (1.076,1.18)  23.9 
Rotor diameter     1.02 (0.984,1.057)  − 0.8  1.02 (0.985,1.061)  − 0.7 
Hub height     1.02 (0.991,1.056)  − 0.1  1.02 (0.984,1.049)  − 1.1 
Tip speed     0.95 (0.904,0.998)  2.2  0.95 (0.9,0.998)  2.1 
Project age     1.19 (0.901,1.569)  − 0.5  1.21 (0.906,1.608)  − 0.4 
# of turbines in view     1.00 (0.996,1.012)  − 1.0  1.00 (0.995,1.011)  − 1.5 
Move in after     0.23 (0.106,0.51)  11.2  0.25 (0.112,0.563)  9.3 
Like look of wind project (neutral)a          4.6 

- No        2.65 (0.944,7.417)  
- Yes        0.99 (0.388,2.511)  

General annoyance        0.93 (0.618,1.404)  − 1.9  

* Compared to those that are not hosting nor being compensated. 
a ΔAIC represents the importance of the variable as a whole. 
† Odds ratio (OR). Bolded and underlined values indicate a significance at p < 0.05. 

11 Although not discussed here in detail, liking the look of the turbines was 
nuanced among respondents. Those who did like the look did not believe the 
turbines were “attractive” but did feel they represented “progress.” Alterna-
tively, those that did not like the look believed they “did not fit” with the 
landscape and were “unattractive”. 

12 One reviewer pointed out that perceptions of the planning process have 
been found to be a strong predictor of wind turbine annoyance [6] and strongly 
annoyed individuals [21]. As noted later in the document, this might be a useful 
variable to study in future analyses. 
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Table 4 
SF annoyance regression results.  

(n = 220) Basic Observable Subjective 

Nagelkerke R2 0.23 0.27 0.58 

Area under the curve (AUC) 0.63 0.66 0.8 

Maximum VIF 1.85 2.07 2.73 

Leave-one-out 
Cross validation results 

Proportion correctly predicted  

Total Proportion Correct 0.49 0.45 0.65 

Variable ORy (95% CI) ΔAIC ORy (95% CI) ΔAIC ORy (95% CI) ΔAIC 

Distance bin  0.51 (0.214,1.235)  0.2  0.57 (0.227,1.45)  − 0.6  0.39 (0.14,1.091)  1.2 
Large project  1.26 (0.54,2.946)  − 1.7  1.29 (0.519,3.207)  − 1.7  0.95 (0.329,2.767)  − 2.0 
College  0.43 (0.245,0.755)  6.6  0.42 (0.232,0.745)  6.7  0.33 (0.171,0.632)  9.2 
Female  1.55 (0.906,2.648)  0.6  1.56 (0.899,2.72)  0.5  1.58 (0.853,2.92)  0.1 
Age  0.97 (0.951,0.991)  6.0  0.97 (0.945,0.988)  7.4  0.96 (0.939,0.987)  6.9 
Project participation (non-part.)*, a    25.1    23    1.4 

- Compensated: not a host  0.19 (0.097,0.374)   0.19 (0.093,0.377)   0.39 (0.177,0.869)  
- Compensated: turbine host  0.18 (0.073,0.42)   0.17 (0.067,0.425)   0.55 (0.196,1.565)  

SF (real case, hours per year)  1.04 (1.011,1.062)  6.2  1.04 (1.009,1.062)  5.0  1.03 (0.995,1.055)  0.5 
Rotor diameter     0.98 (0.944,1.018)  − 1.0  0.99 (0.943,1.03)  − 1.4 
Hub height     1.02 (0.986,1.051)  − 0.8  0.99 (0.953,1.024)  − 1.6 
Tip speed     0.98 (0.936,1.029)  − 1.4  0.96 (0.907,1.017)  − 0.3 
Project age     0.78 (0.585,1.038)  0.9  0.65 (0.467,0.916)  4.3 
# of turbines in view     1.00 (0.995,1.008)  − 1.8  1.00 (0.997,1.011)  − 0.8 
Move in after     0.53 (0.24,1.189)  0.4  0.60 (0.239,1.524)  − 0.9 
Like look of wind project (neutral)a          62.3 

- No        10.88 (3.273,36.158)  
- Yes        0.32 (0.108,0.953)  

General annoyance        2.39 (1.45,3.945)  9.7  

* Compared to those that are not hosting nor being compensated. 
a ΔAIC represents the importance of the variable as a whole. 
† Odds Ratio (OR). Bolded and underlined values indicate a significance at p < 0.05. 

Fig. 8. Comparison of modeled SF exposure metrics for the sample population with modeled SF (n = 4,825).  
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Notably, only two of those regions specify a modeling metric (real or 
worst). In the authors' experience, where there is ambiguity as to the 
metric, in most circumstances the 30 h/year limit is modeled during 
permitting as real case. 

3.4.2. Real vs. worst-case ratio and modeled exposure 
As described in Section 1.3, Koppen et al. [24], document a common 

three-to-one ratio between worst and real case SF guidelines. That is, a 
30 h/year real-case limit would allow about three times more SF 
exposure than a 30 h/year worst-case limit. In this section, we test if 
those relationships were borne out in our data and also examine the 
relationship between hours/year and minutes/day, which are some-
times apparently used interchangeably in regulations [24]. 

Fig. 8 plots the modeled maximum number of minutes of SF in a day 
against the annual SF hours for each respondent with any modeled SF in 
our sample population (n = 4825). Both the real case (orange) and worst 
case (dark grey) modeled values are provided, and a trendline fitted to 
the data is superimposed over the scattered data. Horizontal dotted lines 
denote 30 and 8 min/day, and, separately, vertical lines denote 30 and 8 
h/year. These dotted lines nearly intersect on the solid trendlines of the 
scattered worst and real case modeled SF values. This indicates that a 
ratio of 30 worst case hours/year is roughly equivalent in our data to the 
30 worst case minutes/day, as is 8 real case hours/year and 8 min/day. 
Further, the ratio in our data of worst to real case is roughly three to one 
(r2 = 0.93), which is equivalent to the German guidelines and others 
outlined by Koppen et al. [24]. 

The data from Fig. 8 also indicate that approximately 7% of all 
modeled residences in the sample population (including both survey 
respondents and non-respondents) exceed either 30 h/year worst case or 
8 h/year real case (the “30/8 limit”). Although we do not show distance 
in the figure, the data indicate that 21% of residences within 1 km of any 
turbine exceed the 30/8 limit. As discussed in Section 3.4.1, the majority 
of counties in our sample do not apply SF exposure limits, and those that 
do fail to specify whether those limits are real or worst case limits. Fig. 8 
elucidates that if those limits were in force, compliance would not be 
achieved at many residences. However, we found that only 2.3% of 
those with modeled SF exceeded 30 h/year real case. This supports our 
interpretation that real case is used with 30 h/year standards where the 
metric is ambiguous. 

3.4.3. Survey respondent exposure summary 
Considering the sample of survey respondents (n = 717), 27% exceed 

the 30/8 limits. This percentage is above the 7% of the full sample 
population discussed in Section 3.4.2 because the respondents are, by 
design, closer to turbines than the general population and have a higher 
preponderance of exceeding the limits. Considering the 404 survey re-
spondents with any modeled SF, 50% exceeded either of the 30/8 limits, 
with 37% exceeding both. 

Individuals living closest to wind turbines are also likely to host a 
turbine or are otherwise being compensated, which could accommodate 
higher levels of SF as part of that agreement. Table 5 shows that at least 
70% of the turbine hosts experience SF above either limit, 55% or more 
of the compensated neighbors exceed the limits, and at least 34% of the 
non-participants have modeled SF that are above both limits. 

Importantly, in line with the findings above, the group that exceeds 
the 30/8 limits is no more likely to be annoyed by SF than respondents 
who are under the limit. 

3.4.4. Combined wind turbine noise and shadow flicker exposure 
We examine if sound-level limits can be used as a proxy for SF limits, 

which, as discussed in Section 3.4.1, are rarely applied. Noise exposure, 
for our purposes here, is modeled as a one-hour equivalent continuous 
A-weighted sound level (L1h).13 In the US jurisdictions we reviewed, 45 
dBA and 50 dBA are commonly applied noise limits (or greater for 
participating homes), although metrics and averaging times vary 
considerably. 

Fig. 9 shows the proportion of the population in real-case SF cate-
gories with respect to wind turbine sound-level categories. For homes 
with modeled wind turbine sound level 40 dBA or below, 98% do not 
exceed the 8-hour real-case SF limit, while between 40 and 45 dBA, 90% 
do not exceed the limit. Alternatively, for those between 45 and 50 dBA 
or greater than 50 dBA, only 40% and 25% are below the 8-hour real- 
case SF limit, respectively. These results indicate that a sound limit of 
45 dBA is a decent proxy for meeting a SF limit of 8 h/year real case. 
Paradoxically, low SF exposure limits are not a good a predictor of low 
noise exposure, as very low (or no) SF occurs across all sound-level 
categories. 

The relationships are different for SF annoyance. Fig. 10 shows the 
distribution of respondent SF annoyance by turbine sound-level cate-
gory. Fig. 10A appears to show a relationship between SF annoyance and 
sound level. Higher proportions of respondents exposed to sound at 
progressively higher sound levels reported some level of SF annoyance 
at higher rates. However, as outlined in Section 2.1.4, only those 
experiencing SF in their home can be annoyed by it in their home. 
Considering that cohort, we find the absence of a correlation between 
sound level and SF annoyance: SF annoyance levels are roughly equally 
distributed across sound-level categories (Fig. 10B). The survey data also 
indicate that noise and SF annoyance are similar among survey re-
spondents: 71% of those very annoyed by SF (n = 72) indicated that they 
are also very annoyed by noise from the wind turbines (data not shown). 

4. Conclusions 

Although SF has been identified in multiple national surveys as a 
potential source of annoyance among wind project neighbors, the 
magnitude of SF exposure and drivers of SF annoyance have remained 
significantly understudied, leaving both developers and communities in 
need of science-based guidance. To help fill that research gap, this study 
modeled SF exposure at nearly 35,000 residences, 747 of which were 
also survey respondents, and developed models to predict the re-
spondents' stated perceived SF and SF annoyance. In so doing, we pro-
vide information not only on the levels and extent of SF exposure around 
US wind projects, but also identify variables that do (and, of equal 
importance, do not) predict perception and annoyance to SF. The 
research also reports on findings about SF modeling and metrics, 
including the relationship between noise, SF exposure, and SF 
annoyance. 

Table 5 
SF exposure in the United States above the “30/8 limit” with respect to project 
participation for survey respondents with modeled SF.  

Project 
participation 

Above 8 hours per year 
real case 

Above 30 hours per year 
worst case 

n 

Non-participants  37%  34%  249 
Compensated  60%  55%  92 
Turbine host  73%  71%  41  

13 Specifically, A-weighted decibels (dBA) are the level of sound weighted to 
mimic the perception of the human ear. In this study, we estimate the maximum 
expected equivalent continuous sound level over one-hour (L1h), using the ISO 
9613-2 sound propagation standard with mixed ground porosity (G = 0.5), 
four-meter receptor heights, and + 2 dB (dB) uncertainty (see [10] for expla-
nation of these terms and more details). 
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Perceived SF is found to be largely influenced by observable char-
acteristics, including SF exposure, distance to the nearest turbine, and 
whether a respondent moved in after the project was built. Notably, only 
about half of those with SF exposure in the range of 4 to 8 h per year real 
case reported perceiving SF in their home. When applied to a predictive 
model of an individual's perceived SF in their home, up to 71% of the 
perceived SF regression model predictions were correct. 

Of respondents with modeled SF at their home, 17% reported being 
highly annoyed. SF annoyance is found to be correlated with one's 
subjective response to the look of the wind turbines, general annoyance 
to other anthropogenic sounds, level of education, and age. With sub-
jective factors included, an individual's annoyance to SF was correctly 
predicted 65% of the time, with 73% of the “very annoyed” responses 
predicted correctly by the model. Importantly, when individual sub-
jective factors were considered, modeled SF exposure was not signifi-
cantly correlated with SF annoyance. 

In summary, we find modeled SF levels predict one's perceived SF, 
but once perceived, higher levels of SF are not a predictor of higher 
levels of self-reported annoyance. These concepts are similar to findings 
we previously observed for wind turbine noise—that modeled wind 
turbine sound level was a robust predictor of wind turbine audibility but 
not annoyance to wind turbine noise [10,22]. 

SF exposure is regulated in relatively few jurisdictions across the US 

analysis area. The most commonly enforced limit across the United 
States in the project areas evaluated in our study is 30 h/year, similar in 
value to German worst-case guidelines and other standards found in the 
EU. However, in the United States, the metric is rarely defined as real or 
worst case, and, in our experience, is most often interpreted during the 
application process as real case. Of the full sample population, 7% 
exceed 30 h worst case or 8 h real case. Of the 404 survey respondents 
with any modeled SF, 50% exceeded the 30/8 worst-case/real-case 
limits, though a majority are project participants, and 2.3% exceeded 
30 h/year real-case. Respondents exceeding those limits were no more 
likely to be very annoyed by SF than other respondents. 

Regulated SF exposure limits are designed to mitigate annoyance, yet 
we find no clear dose-response relationship between SF exposure and 
self-reported annoyance when subjective variables are considered. 

However, several of our findings can be helpful to inform SF regu-
latory standards. Overall, we found that an average relationship of worst 
to real case of roughly 3 to 1, following the relationship enforced in 
many EU jurisdictions. Including land-cover data in the analysis, has 
little effect on modeled levels for most residences, but could be used to 
obtain more realistic estimates of SF at individual locations, especially if 
high-resolution ground cover data are available. Finally, more than 90% 
of homes exposed to wind turbine sound levels below a typical limit of 
45 dBA L1h also received less than 8 h/year real-case SF. These results 

Fig. 9. Comparison of combined exposure of population to SF and wind turbine noise (by sound-level category) based on modeled real case SF (n = 16,077).a 

aFor sound-level categories, “a to b” means a < x ≤ b. 

Fig. 10. Distribution of SF annoyance by modeled wind turbine sound-level category for (A) all respondents (n = 717) and (B) only respondents with modeled SF (n 
= 260).a 

aFor sound-level categories, “a to b” means a < x ≤ b. 
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imply that sound-level limits might act as a decent proxy for SF limits. 
This paper looks at self-reported annoyance, which is more of an 

attitudinal variable than annoyance stress. Accordingly, SF emissions 
could reduce the community acceptance of wind turbines and thus 
should be reduced to the extent feasible. 

We offer several suggestions for future research:  

(1) Future research should further examine the interactive impacts of 
SF, sound, and visual perception on wind project neighbors and 
their perceived levels of annoyance.  

(2) Although SF is typically regulated by exposure (i.e., minutes or 
hours), we find that SF exposure is not significantly correlated 
with annoyance. If a goal is set to reduce SF annoyance, though, 
future research, in the United States and in Europe, should study 
other approaches, metrics, or standards to mitigate SF 
annoyance.  

(3) Wind energy is rapidly expanding on a global scale, yet, to our 
knowledge, in-depth studies of SF exposure and annoyance have 
been conducted in few regions. Researchers should seek to 
replicate these types of analyses in more regions where wind 
energy is deployed. Additional survey questions could reveal 
more factors leading to annoyance such as time-of-day impacts, 
work and sleep schedules, activity interruptions, and measures 
taken to mitigate SF, such as shutting down the wind turbines 
during periods of intense SF.14  

(4) Pohl et al. [29] used a weighted shadow duration (WSD) variable, 
which accounted for modeled SF hours and the number of shaded 
rooms and outdoor areas in a home. They found a consistent 
significant relationship between WSD and SF annoyance; these 
data were not available for this study. Future case studies, 
though, could seek to replicate Pohl et al.'s methodology to test if 
that relationship is robust, as well as, potentially, exploring other 
variables that might modify modeled SF. These variables include: 

the prevalent time-of-day SF is experienced, the intensity of the 
SF based on the turbine's distance and the number of turbines 
creating the SF.  

(5) The annoyance stress scale (AS-scale) as developed by Hübner 
et al. [22], may provide an improved metric from a policy or 
regulatory perspective to protect public health over self-reported 
annoyance. Self-reported annoyance (without accounting for 
stress and coping mechanisms, for example) may miss the full 
weight of the responses of unique individuals. Indeed, this is a 
promising area for future study for wind turbine SF, noise, and 
public acceptance in general. 
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Appendix A. Data tables  

Table A1 
Count and percentage data for Fig. 5A.   

Count Percentage 

No SF On property In home No SF On property In home 

0 h 301 12 11 93% 4% 3% 
>0 & ≤4 h 66 13 27 62% 12% 25% 
>4 & ≤8 h 38 11 54 37% 11% 52% 
>8 & ≤30 h 28 16 110 18% 10% 71% 
>30 h 0 3 27 0% 10% 90%   

Table A2 
Count and percentage data for Fig. 5B.   

Count Percentage 

No SF On property In home No SF On property In home 

>0 & ≤4 h 66 13 27 62% 12% 25% 
>4 & ≤8 h 38 11 54 37% 11% 52% 
>8 & ≤30 h 28 16 110 18% 10% 71% 
>30 h 0 3 27 0% 10% 90%   

14 Shutting down the turbines was suggested by a reviewer who is familiar 
with a German requirement to limit SF hours below a certain threshold. 
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