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ABSTRACT 47 

The Tennessee Department of Transportation chose to replace their quick-response-based long 48 

distance component in their statewide model by integrating FHWA’s new national long distance 49 

passenger travel demand model into their new statewide model and calibrating it to long distance 50 

trips observed in cell-phone based origin-destination data from AirSage.  The new national long 51 

distance model is a national scale, tour-based simulation model developed from FHWA research 52 

on long distance travel behavior and patterns.  The tool allows the evaluation of many different 53 

policy scenarios including fare or service changes for various modes including commercial air 54 

travel, intercity bus, and Amtrak as well as highway travel.  The availability of this new tool 55 

represents a new opportunity for state DOTs developing statewide models.  Commercial cell-56 

phone based big data on long distance trips also represents a new opportunity and a new data 57 

source on long distance travel patterns which have previously been the subject of very limited 58 

data collection in the form of surveys.  This project is the first to seize on both of these new 59 

opportunities by integrating the new national long distance model with the new Tennessee 60 

statewide model and by processing big data for use as a calibration target for long distance travel 61 

in a statewide model.  The paper demonstrates the feasibility of integrating the new national 62 

model with statewide models, the ability of the national model to be calibrated to new data 63 

sources, the ability to combine multiple big data sources, the value of big data on long distance 64 

travel as well as important lessons on its expansion.   65 

 66 

Keywords: Long Distance Travel, Statewide Model, Travel Demand Forecasting, AirSage, 67 

rJourney   68 
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INTRODUCTION 69 

The Tennessee Department of Transportation (TDOT) chose to implement an innovative 70 

approach to forecasting long distance passenger travel in their new statewide model.  The 71 
standard practice for handling long distance passenger travel in statewide travel models is to add 72 
one or more special long distance trip purposes in a three- or four-step model structure, often 73 
borrowing parameters from studies such as NCHRP 735 (1).  Instead, TDOT chose to integrate 74 
FHWA’s new national long distance passenger travel model, rJourney, into their statewide model 75 

and calibrate it to long distance trips observed in cell-phone based big data.   76 
Although long distance trips are much less common than short distance trips, because 77 

each trip has the potential to contribute so many vehicle miles of travel (VMT), these trips have a 78 
large and disproportionate effect on congestion and traffic on major intercity corridors such as I-79 
40, I-75, I-24, and I-65 in Tennessee.  A significant portion of long distance trips related to 80 

business travel also have notably higher value of time than most other trips, so reductions in 81 
delays for these trips can produce comparatively large economic benefits.   82 

The availability of FHWA’s new national rJourney model (2, 3, 4), together with the 83 
availability of new big data sources such as cell phone derived big origin-destination (OD) data, 84 
presented a new and exciting opportunity to dramatically improve the representation of long 85 
distance travel in Tennessee and allow new types of scenario analysis.  For instance, the 86 

inclusion of a robust long distance mode choice modeling in rJourney allows the evaluation of 87 
scenarios such as increased air fares, expanded Amtrak service or new intercity bus services and 88 

the impact of such assumptions on highway volumes.   89 
This is the first application of the national long distance model to support statewide 90 

modeling and forecasting, and is believed to also be the first use of big cell-phone based OD data 91 

to support development of a statewide travel model, although it is known that work to update the 92 

Virginia statewide model with similar data began at close to the same time.   93 

The work to incorporate the new national model within TDOT’s statewide model was 94 
part of a larger update to the model.  TDOT originally developed a simple statewide model for 95 

Tennessee in 2003.  TDOT developed a new, version 2, statewide model in 2014 to support 96 
development of their statewide long range plan.  Although the version 2 model was also limited 97 
in sophistication due to the project schedule, it included three times as many zones (5) and road 98 

miles and offered much finer resolution in the representation of projects and their impacts.  The 99 
version 2 model also included a truck model supported by the purchase of an eight week dataset 100 

of truck GPS based OD data from the American Transportation Research Institute (ATRI).  The 101 
data included information from over 234,000 individual trucks on over 6.5 million truck trips 102 
representing roughly 11% of the trucks on the road for 56 days.  The version 2 model also used 103 

Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics 104 
developed by the Census Bureau in cooperation with the Bureau of Labor Statistics which 105 
provides big OD data on commuting patterns based on administrative tax records.   106 

This data-driven approach, albeit incomplete and supplemented by traditional synthetic 107 

quick response methods in version 2, lead to very good model performance.  The model’s 108 
highway assignment achieved impressive validation statistics versus traffic counts for a 109 
statewide model including a 37% root mean squared error (RMSE) and a correlation coefficient 110 
of 0.97.   111 

Since the project schedule had precluded the incorporation of all the desired functionality 112 
and features in the version 2 model, TDOT embarked upon an update to develop the version 3 113 
Tennessee Statewide Travel Model (TSTM3).  The new model incorporates a new commodity 114 
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flow freight model, an advanced trip-based model for short distance passenger trips including 115 
mode and destination choice models with non-home-based trips linked to home-based trips (6), 116 
as well as the integration of the new national model for long distance passenger trips.  Building 117 
on the success of the data driven approach with the ATRI and LEHD data in version 2, TDOT 118 

purchased cell-phone based data to support the development of the version 3 model, with special 119 
filtering for long distance trips to support the calibration of the national long distance model in 120 
particular.    121 

The paper below begins by describing the data and its processing before turning to 122 
describe the integration of the national model with the Tennessee statewide model designed to 123 

produce reasonable runtimes.  The paper then documents the success of the project at calibrating 124 
the national model to the big OD data and its support of overall impressive validation statistics 125 
before offering some concluding thoughts.   126 

INTEGRATED MODELING METHODOLOGY 127 

The demand forecasting components of the Tennessee Statewide Travel Model (TSTM3) can be 128 

grouped into three sets of models: (i) freight demand models, (ii) short distance daily passenger 129 

demand models, and (iii) long distance passenger demand models.  The latter, long distance 130 
models are the focus of this paper and include the national long distance passenger demand 131 
model together with several data manipulation and processing steps to achieve integration of and 132 

translation between the networks and zone systems for Tennessee and the national model.  (See 133 
Figure 1.) 134 

 135 

 136 
FIGURE 1 Tennessee Statewide Travel Model Integration with the National Long Distance 137 

Passenger Travel Demand Model 138 

The first process involved in the integrated model run is the production of the highway 139 
skim for the national model using the Tennessee model network.  The national model natively 140 
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uses a highway network developed from the Oak Ridge National Highway Planning Network 141 
and a zone system of 4,570 zones or national use modeling areas (NUMAs) comprised of 142 
counties in rural areas and Census Public Use Microdata Areas (PUMAs) in urban areas.  To 143 
facilitate the integration of the TSTM3 with the national model, the national model’s highway 144 

network was added to the TSTM’s model network outside of Tennessee, while the more detailed 145 
TSTM network was retained within (and immediately adjacent to) Tennessee.  Outside of 146 
Tennessee the national model’s original centroids and centroid connecters were retained.  Within 147 
Tennessee, the TSTM centroid nearest the center of each NUMA was designated as the centroid 148 
for that NUMA.  Highway skims for the national model were thus created using the national 149 

model’s zone system but the TSTM’s more detailed highway network within Tennessee.  (A 150 
separate highway skim is used for the daily short distance passenger trips using the more detailed 151 
zone system within Tennessee, while a third highway skim with yet another zone system is used 152 

for the freight demand model.)  This approach has the advantage of limiting the size and 153 
associated run time of the skim and not requiring processing to convert skim matrices between 154 
zone systems.  Moreover, it allows the national model to be sensitive to network changes in 155 

Tennessee without requiring improvements to be coded in two separate networks (one for short 156 
distance and one for long distance models).   157 

The second process required to integrate the TSTM3 with the national model is to ensure 158 
that the socioeconomic growth assumptions from the TSTM3 are incorporated into the national 159 
model’s inputs.  There are two parts to achieving this.  The first is the scaling of the synthetic 160 

population for the national model to reflect population growth assumptions and the second is the 161 
update of the national model’s destination choice size variables to reflect employment growth 162 

assumptions.  The national model uses a detailed synthetic population covering the whole 163 
country.  Control variables for the synthetic population come from the Census’s American 164 

Community Survey (ACS) in the base year.  Creating future year synthetic populations for the 165 
whole country poses several challenges.  The process is both data and runtime intensive.  166 

Detailed demographic control total forecasts are required covering the whole country.  Moreover, 167 
these control totals must be carefully crafted or checked to ensure that they are internally 168 
consistent (e.g., the distribution of households by size and the distribution of households by 169 

workers must have the same number of total households for each zone and the number of 170 
households with X workers cannot exceed the number of households with at least X people, etc.).  171 

Given both the data and computational challenges of synthesizing new populations for 172 
alternative future scenarios, an alternative approach was developed to simply rescale the base 173 

year synthetic population based on forecast growth in households.  This approach has the 174 
limitation of not being able to reflect future changes in the characteristics (such as income) of 175 
households in an area, but allows household growth forecasts from the TSTM3 zones to be used 176 

to automatically and reliably update the national model’s inputs with very limited runtime, 177 
without requiring the development of detailed socioeconomic forecasts for the whole country or 178 
complex data reconciliation.   179 

The other part of the socioeconomic updating is the recalculation of the national model’s 180 

destination choice size variables.  Fortunately, this process is substantially simpler, and only 181 
involves the recalculation of formulas using updated employment data forecasts taken from the 182 
TSTM3.  Thus, the national model reflects the household and employment growth scenarios 183 
from the TSTM3 zonal data within Tennessee without requiring the duplication of this data in 184 
another dataset.  Employment and household growth outside Tennessee is taken from a simple 185 
input table with household and employment totals provided at the county level.   186 
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After creating the necessary inputs for the national model using the TSTM3’s highway 187 
network and zonal data, the national model is run.  The national model is a household level 188 
disaggregate tour-based simulation model.  In some regards, it can be considered akin to a 189 
simplified activity-based model.  (For details of the national model, see 4.)  The national model’s 190 

components begin with tour generation, scheduling, duration, and party-size models by purpose 191 
followed by mode and destination choice models similarly segmented by purposes including 192 
leisure/vacation, visit friends or relatives, personal business, commute, and employer’s business.  193 
The national model includes four modes: highway, intercity bus, intercity rail, and commercial 194 
air travel.  As described above, the national model uses the TSTM3’s highway network for its 195 

highway travel times.  It also uses the TSTM3 highway travel times to update intercity bus travel 196 
times.  Tennessee implementation uses the national model’s original networks for intercity 197 
passenger rail and commercial flights, but the user can adjust these to create alternative scenarios 198 

such as increased or decreased commercial air service or fares or new intercity rail service.   199 
The final process in the integrated modeling system is matrix manipulation to convert the 200 

trip list from the national model, using its NUMA zone system, into a trip table matrix using the 201 

TSTM3’s assignment zone system.  This involves both the disaggregation of national model 202 
zones to TSTM3 zones within Tennessee and immediately surrounding areas and the aggregation 203 

of national model zones farther away from Tennessee.  The demand within Tennessee (and 204 
nearby) is disaggregated based on a simple function of the socioeconomic characteristics of the 205 
TSTM3 zones within each NUMA, designed to approximate the number of long distance trips 206 

produced by and attracted to each zone.  Demand farther from Tennessee is simply aggregated 207 
into a larger zone system (at the level of states for much of the country far from Tennessee) to 208 

keep the number of zones limited for assignment to help manage runtimes.   209 
The resulting integrated system provided an efficient approach, allowing the national 210 

model to be run as part of the TSTM3 modeling system, using the information in the TSTM3’s 211 
highway network and zone system.  The long distance components of the TSTM3 including both 212 

the national model itself together with the ancillary pre- and post-processing procedures 213 
described runs in close to one hour on a machine with 12 physical cores and 32 GB of RAM.  214 

CELL-PHONE DATA 215 

As noted previously, this is believed to be the first use of big cell-phone based OD data to 216 

support development of a statewide travel model, although it is known that work to update the 217 
Virginia statewide model with similar data began at close to the same time.  Large scale, 218 

aggregated, anonymous, passively-collected cell-phone OD data such as used in this study has a 219 
history of use for various purposes including the estimation of travel times (7) and origin-220 
destination patterns (8) and resulting data has been compared to and incorporated in metropolitan 221 

area travel demand models (9, 10, 11, 12, 13, 14).   222 
TDOT acquired origin-destination (OD) data from AirSage, Inc., for the state of 223 

Tennessee and a halo area surrounding it.  AirSage aggregates and processes information from 224 
wireless data providers to provide mobility information such as trip tables.  While the exact 225 

number of unexpanded observed trips is unknown, an extremely conservative lower bound can 226 
be established based on the number of OD pairs reported since at least one unexpanded trip of 227 
each type must be observed to be expanded.  Using this method, the cell phone data was based 228 
on a minimum of 3,355,539 observed trips, although the actual number of observed trips is likely 229 
significantly higher.  In contrast, combined household travel survey prepared for TDOT from an 230 
add-on sample to the 2008-2009 National Household Travel Survey (NHTS) and travel surveys 231 
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from local metropolitan planning organizations in the state contained a total of 81,065 trips by 232 
10,344 households in 39,782 OD pairs.  Thus, the cell-phone data contains at least 84 times as 233 
many observations as the household and likely substantially more.  The result is that the big cell-234 
phone data provides a much more complete picture of OD patterns compared to the survey.   235 

Another way to understand the difference in the completeness of the new big data versus 236 
traditional survey data is to consider the amount of the origin-destination space that the data 237 
covers or the percentage of cells within the origin-destination matrix with an observed frequency.  238 
TDOT’s traditional household survey data included observations of 39,782 origin-destination 239 
pairs or 0.3% of the cells in the origin-destination matrix.  In contrast, the cell-phone data 240 

included observations of 3,355,539 origin-destination pairs or 26.3% of the cells in the origin-241 
destination matrix.  This substantially better coverage offered by big data is one major 242 
motivation for its use to support travel modeling in general.   243 

There is even further motivation for the use of cell phone or similar passively collected 244 
big data for studying and modeling long distance trips in particular.  It generally takes significant 245 
additional effort in travel surveys to collect an adequate sample of long distance trips.  For this 246 

reason, it has tended to be expensive and rarely done.  For example, TDOT’s combined travel 247 
survey dataset included only 1,076 long distance trips (over 50 miles in length) out of the 81,065 248 

total trips, and these were clearly skewed towards long distance commute trips and the shorter 249 
end of the spectrum of long distance trips.  Across the United States over the past twenty years 250 
only five useful attempts to collect a representative sample of long distance trips could be 251 

identified for the development of the national long distance model.  While its anonymous nature 252 
precludes it from supplying the same kind of rich detailed information that surveys can, 253 

passively collected big data such as the cell-phone based data used in this study provides a cost 254 
effective alternative to at least for understanding long distance OD patterns.   255 

In order to use the cell-phone based data to calibrate the national long distance passenger 256 
model, it was necessary to first remove commercial travel from the dataset because cell-phone 257 

data captures both personal and commercial trips since travelers, including truck drivers, carry 258 
their cell phones regardless of their travel purpose.  As was noted in the introduction, TDOT had 259 
acquired and processed truck GPS data from ATRI.  The initial plan was to simply subtract the 260 

truck ODs based on the truck GPS data from the total cell-phone based ODs.  However, the 261 
initial attempt to do so revealed that there were more truck trips than total trips for 11% of the 262 

OD pairs observed in the cell-phone data.  Although only 0.2% of the total cell-phone trips were 263 
involved, given the large number of OD pairs, this was considered problematic.   264 

Upon investigation, it became clear that the primary reason for this was a difference in 265 
the way the two datasets were processed relative to the definition of trips and long distance trips 266 
in particular.  The cell-phone data had been purchased with filtering to remove intermediate 267 

stops (such as for fuel, meals, etc.) on long distance trips.  Based on AirSage’s description of 268 
their methodology, if a traveler traveled 50 miles from home the criteria for defining a stop 269 
changed and rather than being based on the amount of time the traveler spent in the same place, 270 
instead, a stop was coded only when the traveler reached the point furthest from home and began 271 

traveling back towards home.  In this way intermediate stops between home and the assumed 272 
destination at the farthest point from home are removed from the dataset.  The truck GPS data 273 
was originally not processed in an analogous way, so it included intermediate stops on long 274 
distance trips.  It was therefore necessary to re-process the truck GPS data, filtering out 275 
intermediate stops.  However, it is less clear how to define home for trucks and in many cases 276 
much more difficult to identify than for most residents of an area who return home most nights.  277 
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Moreover, it was deemed important and desirable to allow for multiple destinations on a long 278 
distance tour (e.g., a truck carrying one shipment from Nashville to Knoxville may then pick up 279 
another shipment and take this to Chattanooga before returning to Nashville).  For both these 280 
reasons, a slightly different algorithm was used for removing intermediate stops from the truck 281 

trips.  When a truck traveled more than 50 miles from one origin, A, to a stop, B, based on dwell 282 
time, location B was not immediately logged as a stop.  Rather, at the next stop C (based on 283 
dwell time), the distance between A and B plus the distance between B and C was compared to 284 
the direct distance between A and C.  If the direct distance between A and C was more than 95% 285 
of the sum of the distance between A and B and between B and C, then B was considered an 286 

intermediate stop and removed, otherwise it was retained.  Thus, this criterion identified 287 
intermediate stops based on whether the truck went out of its way to reach the location.  This 288 
method allowed the removal of many intermediate stops while still allowing multiple “true” 289 

stops on a long distance tour.   290 
After re-processing the truck GPS data using this algorithm to remove intermediate stops, 291 

the resulting truck ODs were again subtracted from the total cell-phone ODs.  The number of OD 292 

pairs with more truck trips than total trips was reduced by 87% from 11% of the ODs to only 293 
1.3% involving less than 0.1% of the total trips.  Although still not perfect, the output was 294 

deemed acceptable because more than 98% of all cells have reasonable auto trips consisting 295 
99.9% of total trips.  The remaining OD pairs with more truck trips than total trips were reduced 296 
to a fraction of a trip (to retain the information that some sort of trip was observed and allow for 297 

expansion given some possibility that a passenger trip may have been observed).  This 298 
experience points to the importance of a common definition of trips (or stops) when combining 299 

multiple big OD datasets.   300 
The expansion of the cell phone data was tested and ultimately adjusted in a two stage 301 

process.  While the details of AirSage’s data expansion algorithm are proprietary trade secrets, 302 
their documentation indicates that they use methods to expand their data based on the ratio of 303 

cell-phones to population data at the inferred residence location.  This basic approach has been 304 
described and studied in academic literature (15, 16, 17, 18) as well as have more advanced 305 
methods that make use of traffic assignment and/or optimization methods (19, 20, 21) to expand 306 

cell-phone data based on traffic counts.  The authors of this paper believe the latter methods to be 307 
generally superior because traffic counts provide unbiased information on the total amount of 308 

vehicular traffic on the road in various locations and the former methods based only on cell-309 
phone ownership levels fail to allow for any variety of factors which can affect the detection of 310 

trips in particular locations, of particular durations, etc.   311 
Initially, the cell-phone data was assigned to the Tennessee model network as a check on 312 

its expansion and in order to determine necessary scaling.  It is typically necessary to scale cell-313 

phone data to account for the number of cell phones per vehicle (closely related to but slightly 314 
different than vehicle occupancy).  However, the test revealed relatively poor fit to traffic counts, 315 
(somewhat in contrast to experiences with using the data in metropolitan areas where simple 316 
scaling usually produces at least reasonable agreement with counts).  In particular, when scaled 317 

to minimize total loading error, there was substantial underloading in urban areas on the order of 318 
-10% versus counts and substantial overloading in rural areas on the order of +15% versus 319 
counts.  Since it is known that vehicle occupancy is substantially higher on long distance trips 320 
than short distance trips, the initial response was to attempt scaling the trips based on distance 321 
rather than uniformly as a whole.  While this did improve the loading issues, it quickly became 322 
apparent that the difference in scaling required to address the loading errors could not be 323 
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accounted for simply by higher vehicle occupancy on long distance trips.  While vehicle 324 
occupancy may be two to three times higher on long distance trips than short distance trips, long 325 
distance trips appeared to be over-represented by a factor of ten or more.  Other hypotheses were 326 
therefore also explored, such as that the bias may be related to area type or density rather than 327 

trip length.  However, none of these explained or corrected the loading errors better than a 328 
distance-based correction, and generally they did worse.  Therefore, a distance-based scaling was 329 
ultimately adopted, but based primarily on the hypothesis of a bias in the cell-phone data rather 330 
than on differences in vehicle occupancy.  Upon further reflection, the possibility of a bias in 331 
cell-phone data toward the detection of long distance trips seems plausible.  Since cell-phone 332 

mobility data depends on signaling between phones and towers, the likelihood of detection 333 
increases with the likelihood of this signaling and this signaling becomes more likely on longer 334 
trips for a variety of reasons including that people are more likely to use their phone the longer 335 

the trip.  The probability of a person using their phone while on a local shopping trip is 336 
presumably much lower than the probability that a person uses their phone a trip to another city 337 
which is likely to take several hours if not a day or more.  This line of reasoning provides at least 338 

a plausible explanation for a potential over-representation of long distance trips relative to short 339 
distance ones in a cell phone dataset.   340 

While techniques for origin-destination matrix estimation (ODME) from counts without 341 
distance-based scaling could have been applied directly to simultaneously address distance bias 342 
and other potential issues with the expansion, the authors preferred a two-step process, first 343 

scaling trips parametrically based on functions of distance and using non-parametric ODME 344 
methods second.  This approach helps avoid large adjustments from ODME without a clear 345 

understanding of the underlying problem or issue.  A good review of ODME techniques, their 346 
limits, and effectiveness can be found in the study by Marzano et al. (22).   347 

 348 
FIGURE 2: Distance-based Scaling Functions for Resident and Visitor Trips 349 

Scaling functions were estimated separately for resident and visitor trips as visitor trips 350 
exhibited much more consistent over-representation independent of trip distance.  This is 351 

consistent with the hypothesis of a bias against short trips since in this context visitors are 352 
already by definition (given the structuring of the data) long distance travelers.  Parameters were 353 
fitted to the function scale = c + a x Exp(b x distance) using least squared errors.  For resident 354 
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trips, c = 0.0612, a = 1.6404, and b = -0.0507.  For visitors, c = 0.0292, a = 0.3376, and b 355 
= -0.0195).  The curves can be seen in Figure 2.  The implication of the resident curve is that a 356 
100-mile trip is 12 times as likely to be detected in the cell-phone data as a 10-mile trip.  Given 357 
that there may be 2 to 3 times as many people on a 100-mile trip as a 10-mile trip, this suggests 358 

that a 100-mile trip is 4 to 6 times as likely to be detected than a 10-mile trip for reasons other 359 
than vehicle occupancy.  The application of these scaling factors did not completely resolve the 360 
observed loading errors but significantly improved them reducing urban underloading to roughly 361 
-2% and rural overloading to roughly 5%.   362 

After the distance based scaling, ODME techniques were applied to further improve the 363 

expansion of the cell-phone data versus counts.  Careful consideration was given to setting 364 
appropriate bounds on the ODME adjustments.  On the one hand, the most limited adjustments 365 
capable of producing good agreement with counts are desirable.  At the same time, it is important 366 

to acknowledge and allow ODME to factor trips to and from certain areas up and down to 367 
account for varying degrees of cell coverage and other factors which can cause necessary 368 
expansion factors to vary beyond simply the variance in cell-phone market shares by resident 369 

areas.  After some experimentation, ultimately, a minimum factor of 0.5 and a maximum factor 370 
of 5.0 were chosen to limit ODME scaling of any given OD pair.  In addition to these limits, the 371 

average amount change in the trip matrix from ODME was closely monitored.  The average 372 
absolute difference between cells in the final adjusted trip matrix and in the scaled matrix was 373 
4.3 trips and the average absolute percentage difference was 1.5%.  Together with the limits on 374 

minimum and maximum adjustments, these were deemed to be generally reasonable 375 
adjustments.  The trip length frequency distribution of the adjusted matrix was also compared to 376 

the original matrix.  The comparison showed that ODME resulted in a modest additional increase 377 
in the expansion of short distance trips versus longer trips.  This seemed to suggest that the 378 

distance based scaling was not excessive but successful in accounting for most of the distance 379 
related adjustments.  The ODME adjustments improved the fit of the cell-phone based data from 380 

55.5% RMSE to 36.6% RMSE versus over 12,000 traffic counts across the state of Tennessee 381 
and given the relatively limited adjustments necessary to achieve this improved fit, this was 382 
deemed a successful and helpful improvement to the expansion.    383 

RESULTS 384 

The national model was calibrated to the cell-phone data primarily through the adjustment of 385 
constants in its component choice models.  In particular, the calibration effort focused on the 386 

adjustment of the tour frequency and destination choice models, since the cell-phone data 387 
provided information primarily on these dimensions of long distance travel and did not provide 388 
information by mode.   389 

 For purposes of calibration comparisons, Tennessee zones were grouped into eight 390 
districts, each named for their largest/best known urban area(s).  The total number of long 391 
distance trips bound to or from each district in the model and in the cell-phone data are compared 392 
in Table 1.  As can be seen, the national model was able to be calibrated to closely reproduce the 393 

observed long distance trip generation rates observed from the cell-phone data.  This was 394 
accomplished through the judicious adjustment of existing constants in the national model and 395 
without the addition of any special constants specific to these districts or other districts or zones 396 
in Tennessee.  Most districts are within about 3,000 trips per day and less than 10% of their total.  397 
The Knoxville district is somewhat under-predicted, most likely because the Smoky Mountains 398 
and associated tourist areas attract more trips than predicted by the model.  Trips to and from the 399 
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Tri-Cities district are over-predicted and the reason for this is less clear, but may be due to model 400 
not understanding the psychological and/or physical barrier posed by the mountainous 401 
topography of this area.  Overall, however, the model does an impressive job of reproducing the 402 
number of trips observed for each district.   403 

TABLE 1 COMPARISON OF MODELED AND OBSERVED (CELL PHONE DATA) 404 
LONG DISTANCE TRIPS BY TENNESSEE DISTRICTS 405 

 406 

 Calibration of destination choice in the national model was more challenging.  The cell-407 

phone data revealed a significant bias against trips crossing the state border with the total number 408 

of long distance trips within the state slightly higher than trips to and from the state crossing the 409 

state border.  The pattern cannot be predicted or explained on the basis of distance alone.  For 410 

that reason, the gravity models based on NCHRP 735 in the version 2 TSTM could not 411 

reproduce the pattern, nor could the original national model.  In order to reproduce the observed 412 

pattern, a single new term had to be added to the utility function of the national model’s 413 

destination choice models to account for a psychological bias against crossing the state border.  414 

Similar psychological boundary effects associated with rivers, railroads, freeways, and 415 

governmental boundaries are commonly observed and incorporated metropolitan destination 416 

choice models.  The addition of this term allowed the calibration of the national model to 417 
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reproduce the pattern observed in the cell-phone data.  No other district or zone or other special 418 

constants were added to the model specification.   419 

TABLE 2 PERCENT DIFFERENCE BETWEEN MODELED AND OBSERVED (CELL 420 
PHONE DATA) LONG DISTANCE TRIPS WITHIN TENNESSEE 421 

 422 

The same districts within Tennessee used for trip generation comparisons were also used 423 

to help evaluate the distribution of long distance trips within Tennessee.  As can be seen in Table 424 

2, the model is able to achieve very good agreement with the observed pattern of long distance 425 

trips within Tennessee.  The total modeled trips to and from each district are within 1.5% of 426 

observed trips for the district, and with the exception of long-distance trips within the Nashville 427 

district, all the modeled district level OD flows are within 2% of the observed flows.  The 428 

distribution of too many long distance trips within the Nashville district may be a result of the 429 

fact that the long distance destination choice models are more driven by distance than travel 430 

times, so congestion within the Nashville region may not be deterring as many trips as it should.  431 

Alternatively, it may simply reflect the inability of the national model to reproduce the complex 432 

long distance commuting patterns of this region given the limited spatial resolution of the 433 

national model.  Despite this particular issue, the overall agreement between the modeled and 434 

observed data is quite good.   435 

TABLE 3 PERCENT DIFFERENCE BETWEEN MODELED AND OBSERVED LONG 436 
DISTANCE TRIPS TO AND FROM TENNESSEE 437 

 438 

Trips to and from the eight internal Tennessee districts and seven external districts 439 

covering the rest of the country were also evaluated.  As shown in Table 3, as with the internal 440 



Bernardin, Ferdous, Sadrsadat, Trevino and Chen 13 
 

trips, the national model is able to generally reproduce the observed pattern fairly well.  The total 441 

modeled trips to and from each district are all within 8.5% of observed trips for the district and 442 

most are within about 5%, and with the exception of long-distance trips between the Nashville 443 

and Northcentral districts, all the modeled district level OD flows are within 4% of the observed 444 

flows.  The model under-predicts trips to and from the Knoxville region, most likely 445 

underestimating the number of trips attracted to the Smoky Mountains (which is the most visited 446 

National Park) and associated tourist areas.  The model also over-predicts trips between 447 

Tennessee and the Northcentral region, but the reason for this is less clear.  Even so, the ability 448 

of the national model to reproduce the complex pattern of long distance trips to and from the 449 

state is quite good.   450 

CONCLUSIONS 451 

This paper has described the first integration of the national long distance passenger demand 452 
model with a statewide travel model and its calibration to cell-phone based OD data for the state 453 
of Tennessee, illustrating one of if not the first application of big OD data to statewide modeling.  454 

The case demonstrates the ability of the national model to be calibrated to observed data and of 455 
an integrated modeling system to produce reasonable runtimes.  The case also illustrates the 456 

general importance of the processing of cell-phone OD data and hypothesizes an importance bias 457 
in cell-phone data towards the detection of long distance trips over shorter ones based on 458 
evidence from the Tennessee application.  However, the case also illustrates the value of such 459 

data through, for instance, its ability to reveal important aspects of long distance travel patterns 460 
such as a psychological boundary effect corresponding to the state border in the case of 461 

Tennessee.  While each state must evaluate the usefulness of various modeling approaches for 462 
their own planning and modeling, the case of Tennessee’s new statewide model demonstrates 463 

that both the new national long distance model and cell-phone OD data can be successfully used 464 
and add value to a statewide model.   465 
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