

Managing Visitor Use at National Parks with Big Data

Rachel Collins, NPS Ted Mansfield and Ben Swanson, RSG Steve Lawson and Abbie Larkin, Otak

January 9, 2022

NPS needs are evolving as park management becomes more complicated

Park management challenges

- Visitation often concentrated during peak periods and at a small number of primary destinations within parks
- High travel volumes can impact travel routes and destinations both within park units and surrounding communities

Existing data systems not responsive to these challenges

- Visitor use surveys are costly and infrequent
- Provide limited information on potential community impacts

How can big data help NPS address these concerns?

Mount Rainier: a Flagship National Park

Mount Rainier

Mount Rainier National Park Washington National Park Service U.S. Department of the Interi

A flagship park with flagship visitation

- Yearly increases in visitation since 2011
- Within driving distance of several major cities in the pacific northwest, including Seattle and Portland

How can LBS data help NPS address park management challenges in Mount Rainier?

RSG and Otak team processed 2019 LBS data

- Validated using a 2012 visitor use survey, other external data
- Insights used develop strategies to support NPS in developing a corridor management plan for Mount Rainier National Park
- Custom processing tailored to address specific goals:

GOAL 1

Confirm or update NPS assumptions about visitor travel to and through MORA.

GOAL 2

Understand visitor travel patterns to and through MORA.

GOAL 3

Understand correlations between MORA visitor travel patterns and other driving factors.

How can LBS data help NPS address park management challenges in Mount Rainier?

RSG and Otak team processed 2019 LBS data

LBS data processing at RSG

Standard LBS data processing:

- Spatial clustering algorithm (DBSCAN) applied to identify clusters
- Sequential records in same cluster grouped to form **visits**
- **Trips** formed between visits, routed on OpenStreetMap roadway network
- Device home location inferred using overnighting patterns

LBS data processing at RSG

Additional custom processing for MORA:

- **Tours** constructed by grouping trips a device makes between departing and arriving back at its inferred home location.
- Devices classified into three quality tiers: bronze, silver, and gold

GOAL 1 Confirm or update NPS assumptions about visitor travel to and through MORA.

LBS data confirms seasonal visitation trends

Most visitors were from nearby, though some were from further afield

GOAL 1 Confirm or update NPS assumptions about visitor travel to and through MORA.

LBS estimates of visitor home location validated by survey results

GOAL 1 Confirm or update NPS assumptions about visitor travel to and through MORA.

What can LBS data tell us about park entrance and exit locations?

Confirm or update NPS assumptions about visitor travel to and through MORA.

Longer-distance visitors relied heavily on the Nisqually entrance

GOAL 1 Confirm or update NPS assumptions about visitor travel to and through MORA.

While Seattle residents used the Mather Wye, Nisqually entrances

GOAL 1 Confirm or update NPS assumptions about visitor travel to and through MORA.

Finally, other Washington residents were more likely to use the Stevens entrance

GOAL 1 Confirm or update NPS assumptions about visitor travel to and through MORA.

Overall, LBS data match count data at park entrance locations fairly well

GOAL 2 Understand visitor travel patterns to and through MORA.

What locations were popular with visitors inside the park?

Popular locations varied by park entrance location

What communities did visitors pass through en route to the park?

What communities did visitors pass through en route to the park?

Buckley

Greenwater

410

What other regional points of interest did park visitors visit on their tour?

What other regional points of interest did park visitors visit on their tour?

GOAL 2 Understand visitor travel patterns to and through MORA.

LBS analysis enabled the Otak/RSG team to provide targeted recommendations to NPS

Four topic areas identified; strategies developed for each

TOPIC AREA 1 Visitors' home locations

TOPIC AREA 2

Visitors' travel patterns en route to the park

TOPIC AREA 3

Visitors' travel patterns in the park

TOPIC AREA 4

Research and development

Not all devices are useful for all analyses

Some trip origins to park unreliable in lowest quality tier:

Not all devices are useful for all types of Bronze devices

And some unreliable routes to the park in lowest quality tier

Ted Mansfield

SENIOR CONSULTANT

theodore.mansfield@rsginc.com