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Abstract 

In the face of growing concerns about greenhouse gas emissions, there is increasing interest in 
forecasting the likely demand for alternative fuel vehicles. This paper presents an analysis carried 
out on stated preference data collected in California, looking at respondent’s preferences in a joint 
vehicle type choice and fuel type choice experiment. Our study recognises the fact that this choice 
process potentially involves high correlations that an analyst may not be able to adequately 
represent in the modelled utility components. Importantly, we further hypothesise that the standard 
Nested Logit model is incapable of capturing the full extent of correlation patterns in such a multi-
dimensional choice process, and that a Cross-Nested Logit structure may be more appropriate. Our 
empirical analysis and a brief forecasting exercise produce evidence to support these suspicions. The 
findings from this paper are not just of interest in the context of the demand for alternative fuel 
vehicles but are also relevant for the analysis of multi-dimensional choice processes in general. 
Finally, an extension shows that additional gains can be made by using mixed GEV structures, 
allowing for random heterogeneity on top of the flexible correlation structures. 

Introduction 

There is increasing interest in the potential demand for alternative fuel vehicles, given not only 
growing environmental concerns, but also recent volatility in oil prices. There are a number of ways 
to use alternative fuels, including a mix of alternative and convention fuels in flex fuel and hybrid 
vehicles, as with ethanol and gasoline or electricity and gasoline, as well as the sole use of 
alternative fuels, in full electric and compressed natural gas vehicles, for instance. The preferences 
for different types of fuels are difficult to predict, not least because of the strong relationship 
between fuel type and other attributes such as performance, annual costs as well as incentives (e.g. 

© Association for European Transport and contributors 2009 1

mailto:s.hess@its.leeds.ac.uk
mailto:mfowler@rsginc.com
mailto:tadler@rsginc.com
mailto:ABahrein@energy.state.ca.us


tax breaks). At the same time, there is a very strong link between fuel type and vehicle type, with 
certain types of fuels being appropriate for specific vehicle types. 

With the growing focus on these vehicles, in reducing greenhouse gas emissions, the long expressed 
interest in modelling the potential consumer response to the introduction of such vehicles should 
come as no surprise. Examples include Train (1983), Bunch et al. (1993), Train (1993), Golob et al. 
(1995), Kavalece (1996), Tomkins et al. (1998), Greene (2001), Batley and Toner (2003), Batley et al. 
(2004), Adler et al. (2004), and Spissu et al. (2009) to name but a few. 

In this paper, we discuss work based on the 2008-09 California Vehicle Survey (CVS), aimed at 
providing input data for the California (light-duty) Conventional and Alternative Fuel Response 
Simulator (CALCARS) model at the California Energy Commission (CEC). The 2008-09 CVS collected 
data on both stated and revealed preferences of vehicle owners in California, to forecast their 
vehicle choice and the use of both conventional and alternative fuel vehicles.  

In the present paper, we focus on the stated preference survey component of this work. The survey 
involved the design of a highly complex survey tool, which included seven fuel types, fifteen vehicle 
types, and up to eleven level-of-service attributes, such as cost, fuel consumption, fuel availability, 
refuelling time and acceleration. To reduce the survey complexity, each choice experiment made use 
of only four alternatives, where this included a reference vehicle and three other vehicles assigned 
on the basis of a weighting approach. An internet-based survey was used to collect the data, 
enabling the collection of a very large sample. 

The main contribution of the work described here comes in the use of a Cross-Nested Logit (CNL) 
structure. Earlier empirical work revealed the existence of significant levels of correlation between 
alternatives sharing the same fuel type as well as between alternatives sharing the same vehicle 
type. As we discuss in detail in the methodology section, the use of multi-level Nested Logit (NL) 
structures was not appropriate in this context, and the use of the CNL model was shown to lead to 
significant gains in model performance as well as the realism of forecasts. Additional gains were 
obtained by allowing for random taste heterogeneity. 

The remainder of this paper is organised as follows. We first describe the survey work carried out for 
this analysis, followed by methodology discussion, and a presentation of the empirical results and a 
brief forecasting example. Finally, we present the conclusions of the work. 

Survey Design 

Survey data were collected using a two-phase, multi-method approach. The first phase involved a 
recruitment survey to collect data on revealed preferences (RP) and identify participants planning to 
purchase a vehicle to recruit for the stated preference survey. The second phase included the stated 
preference survey with eight vehicle choice exercises.  

In the RP survey, respondents were asked to indicate the type of vehicle they are most likely to 
purchase next for their household; including information about the vehicle type, fuel type, expected 
fuel efficiency, purchase price, vehicle age, and estimated number of miles the vehicle would be 
driven annually.  

After completing the revealed preference (RP) survey over landline and mobile phones, the 
respondents were given the option of completing the stated preference (SP) survey using either 
print or online questionnaires. In both cases, data from the RP survey was used to construct a set of 
eight stated preference exercises for the SP survey, tailored to the specific individual.  

© Association for European Transport and contributors 2009 2



Each stated preference exercise presented respondents with four hypothetical vehicles as 
alternatives. The first vehicle, or the reference vehicle, was presented as the new or used vehicle the 
respondent planned to purchase next for their household. The attributes that describe the reference 
vehicle were consistent with what the respondent reported in the RP survey in terms of vehicle type, 
fuel type and age, with the remaining attributes varying across choice sets. The next three 
alternatives were presented as vehicles of different sizes, fuel types and ages. The four vehicles in 
each exercise were described by a set of ten to twelve attributes, depending on the fuel type 
presented. Respondents were asked to select the vehicle they would most prefer to purchase based 
on the attributes presented in each alternative. The values of each attribute varied according to an 
experimental design (discussed later), requiring respondents to trade off attributes against each 
other. Figure 1 presents an example of one of the eight stated preference exercises of a hypothetical 
respondent. 

The first two attributes for each alternative were vehicle type and fuel type. A total of fifteen vehicle 
types and seven fuel types were selected for the exercises. The vehicle type was fixed to the 
response given in the RP survey for the reference vehicle. For the remaining three alternatives, 
vehicle type was drawn from one of the following fifteen types:  

1. Subcompact car  
2. Compact car 
3. Mid-size car 
4. Large car 
5. Sport car or “two door high performance subcompact car” 
6. Small cross-utility car or “small wagons with flexible seating” 
7. Small cross-utility SUV 
8. Mid-size cross-utility SUV 
9. Compact SUV 
10. Mid-size SUV 
11. Large SUV 
12. Compact van 
13. Large van 
14. Compact pick-up truck 
15. Standard pick-up truck 

While it was possible any vehicle could be selected for the three alternate vehicles, the selection of 
those vehicles was done using weighted draws based on the respondent’s reference vehicle type. 
Weighted draws were used because it is expected that respondents will have relatively strong 
preferences for at least a broad category of vehicles (e.g. small or large), and as a result presenting a 
respondent with a choice between a reference subcompact car and a large van makes little sense. In 
that situation, vehicle type would dominate the choice process and little or no information could be 
gained for the sensitivities to other attributes. On the other hand, completely restricting the 
different combinations of vehicle types presented to a respondent did not seem appropriate. As a 
result, a set of weights were developed for each reference vehicle type. With these weights, all 
vehicle types have a non-zero probability of being included in an exercise, but the probability is 
higher for those vehicles that are more similar to the reference vehicle type. An especially high 
weight of approximately 50 percent was used for the reference vehicle type, which ensured that, at 
least for one pair of alternatives, the relative preference was not influenced by vehicle type. The 
vehicle types for the three alternative vehicles were drawn without replacement from the list of 15 
vehicle types, meaning that, while the reference vehicle was allowed to repeat in one other 
alternative, allowing respondents to trade off attributes other than vehicle type, no other vehicle 
types were allowed to repeat across alternatives within a single choice exercise. 
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For the reference vehicle, fuel type was fixed to the respondent’s RP response. The remaining fuel 
types were drawn from the following list: 

1. Standard Gasoline 
2. Flex Fuel/E85 
3. Clean Diesel 
4. Compressed Natural Gas 
5. Hybrid-electric 
6. Plug-in Hybrid-electric 

7. Full Electric 

Fuel types for the three alternate vehicles were selected entirely randomly, i.e. not using any 
weights, thus guaranteeing that all possible combinations were represented roughly evenly. As with 
vehicle types, fuel types were drawn without replacement, meaning that while the reference vehicle 
fuel type was allowed to repeat in one of the three alternate vehicles, allowing respondents to trade 
off attributes other than fuel type, no other fuel types were allowed to repeat across alternatives 
within a single exercise. 

The remaining vehicle attributes were dependent on the vehicle and fuel type. While values for 
vehicle type and fuel type were selected using weighted and random draws as described above, the 
values for the remaining attributes varied according to an orthogonal experimental design. The 
orthogonal design is described in more detail later on.  

Many of the vehicle attributes vary around a base value. In the case of purchase price, maintenance 
cost, miles per gallon equivalent, fuel cost per gallon equivalent, and acceleration, a table with base 
values was used, representing average values for all vehicles of a particular vehicle type, fuel type 
and vintage. 

The remaining attributes included in the survey were as follows: 

 The vehicle age was automatically set to new for plug-in hybrid electric and full electric 
vehicles, with variations around the reference vehicle age for other vehicles 

 The purchase price of the vehicle varied around a base value. For the reference vehicle, the 
base value is the response given in the RP survey. For the three remaining alternatives, the 
base value was dependent on a “list price” determined from the combination of vehicle 
type, fuel type, and vintage, where this was adjusted by the ratio between the indicated 
price of the reference vehicle in the RP survey and the list price for that vehicle, thus 
accounting for the possibility that a respondent was considering a higher than average or 
lower than average price for the reference vehicle. Variations across choice sets are then 
based on the experimental design. 

 There were six purchase incentive levels shown in the survey, with the exception of 
gasoline-powered vehicles, where no incentives were used. Incentives included carpool lane 
access, free parking, tax credits, reduced tolls and reduced purchase price. Variations across 
choice sets are then based on the experimental design. 

 A base maintenance cost per mile for each vehicle was assumed based on the vehicle type, 
fuel type, and vehicle age. The maintenance cost per mile was multiplied by the reported 
annual VMT to calculate an annual maintenance cost. Variations across choice sets are then 
based on the experimental design. 

 A base value for miles per gallon equivalent was assumed based on the vehicle type, vehicle 
age, and fuel type. Variations across choice sets are then based on the experimental design.  

 The annual fuel cost was calculated using the fuel cost in gasoline gallon equivalents, which 
was a design attribute, the vehicle efficiency in miles per gallon equivalent, and the annual 
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miles reported in the RP survey. The variation across choices was based on variations in the 
fuel cost in gasoline gallon equivalents, as specified in the experimental design. 

 The fuel availability, refuelling time, and vehicle range attributes only applied to full electric 
and compressed natural gas vehicles, where variations across choice sets for applicable 
vehicles are then based on the experimental design. 

 The acceleration attribute was presented as the time it takes to accelerate from zero to 60 
miles per hour in seconds. The acceleration of each vehicle was assumed to vary based on 
the vehicle type, fuel type and vehicle age, and varied according to the experimental design. 

The experimental design used for this SP survey was based on an underlying orthogonal design. 
While several types of designs were considered at the onset, including arguably more advanced 
efficient designs, it was concluded that, given the complexity of the SP scenarios, an orthogonal 
design was the most appropriate for this particular application. While efficient designs can be 
preferable in some situations, the generation of an efficient design requires prior parameter values 
for all coefficients, as well as a priori decisions in relation to model structure and utility specification, 
including interactions with socio-demographic variables. While choice between hypothetical options 
already causes significant problems, further problems arise in the present study as it examines the 
choice of vehicle types and fuel types. Here, the preferences can be expected to vary across 
respondents to such an extent – some respondents will strongly prefer compact cars, while others 
will strongly prefer large SUVs – that it becomes difficult to obtain reliable prior parameter 
estimates. Additionally, vehicle type and fuel type would have to be directly included in the design, 
leading to the requirement of generating a very large number of different designs for different 
combinations of vehicle types and fuel types. These design considerations were not necessary with 
the approach used in this study, where vehicle types and fuel types were added to the design in a 
second stage, after generating the base design.  

This base design is an orthogonal design of 144 rows, split into 18 blocks of 8 choices. Orthogonal 
blocking was used to avoid any correlation between the attributes and the blocks (e.g. avoiding the 
situation where one respondent gets all the high price options). The design contains the levels for 
ten attributes (the attributes other than vehicle type and fuel type) and four alternatives. The 
vehicle types and fuel types drawn according to the approach described above were used as inputs 
for calculating the base values for the levels in this underlying design. In the actual survey, each 
respondent was presented with one block of eight choice situations. Care was taken to ensure that 
the 18 different blocks were presented the same number of times and that there was no correlation 
between sample subgroups and blocks. The choice situations presented to the respondent were 
constructed on the basis of the set of vehicle type/fuel type combinations drawn for that 
respondent, and the block of 8 choice situations used from the experimental design for that 
respondent. The order in which the 8 choice situations from a given block were presented to a 
respondent was randomized across respondents. 

Modelling methodology 

As already alluded to in earlier parts of the paper, the SP data was used to develop discrete choice 
models belonging to the family of random utility models. For a thorough introduction to such 
models, see Train (2003). In this section of the paper we first discuss utility function specification, 
which was identical for all estimated models, followed by a discussion of model structure. At this 
stage, it is also worth noting that the models used in the present paper exclude respondents from 
multi-vehicle households. 
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Utility specification 

An extensive specification search was conducted, leading to the inclusion of the following terms 
were in the final specification of the utility function: 

 Constants for the first three SP alternatives, along with constants for fuel type and vehicle 
type inertia 

 Vehicle type specific constants, with subcompact as the reference vehicle 

 Fuel type specific constants, with standard gasoline as the reference fuel 

 A constants for vehicles aged 1 or 2 years, and a constant for vehicles aged 3 years or more, 
with new vehicles as the reference age 

 Four incentive constants, with no incentive as the reference 

 Marginal utility coefficients associated with vehicle price ($1000s), annual fuel costs 
($1000s), maintenance costs ($1000s) 

 A marginal utility coefficient interacting with vehicle price ($1000s) and the income 
category, where seven equally sized income groups were used, and where this linear 
relationship was justified on the basis of earlier results using income category specific cost 
coefficients 

 Marginal utility coefficients associated with vehicle attributes of miles per gallon equivalent 
(MPGE), range (miles), acceleration (seconds taken to 60mph) 

 Constants associated with the option of plugging in electric vehicles at work and at other 
locations, and the availability of compressed natural gas at 1 out of 20 stations, with the 
respective references being home plug-in only, and availability at 1 in 50 stations 

 Constants associated with interaction terms for large households and medium-sized 
vehicles, large households and large-sized vehicles, alternative fuel vehicles and medium-
sized vehicles, and alternative fuel vehicles and large-sized vehicles 

This specification led to the use of 44 individual parameters. Note that efforts to include refuelling 
time in the models were unsuccessful. 

Model structure 

Although a large number of attributes are used to describe the various alternatives in the SP survey, 
two of them stand out as main product characteristics, namely the vehicle type and the fuel type. 
Given the nature of the choice scenarios, there are clear grounds to suspect a heightened degree of 
correlation between two alternatives sharing the same vehicle type or two alternatives sharing the 
same fuel type. This is even more so the case for two options that are of the same vehicle type and 
the same fuel type, but vary along some other dimension. To some extent, these correlations can be 
explained by the inclusion of alternative specific constants, but the degree of variation across 
respondents in their preference for the different vehicle types and fuel types is potentially so high 
that a large share of the correlation remains unexplained. However, the use of a random coefficients 
approach to model the heterogeneity in the vehicle type and fuel type constants across respondents 
is not an option, given the high number of random terms this would lead to. On the other hand, if 
the effects of this unobserved correlation are not accounted for, it is likely to lead to 
unrepresentative substitution patterns. Indeed, assuming that a respondent is interested in 
purchasing a compact gasoline car and that for some reason, this vehicle becomes unavailable, he or 
she is arguably more likely to switch to a differently-sized gasoline vehicle (say a sub-compact), than 
to a vehicle that is of a different fuel type and a different vehicle type. Additionally, there is the 
possibility that the respondent may more closely evaluate a switch to a differently fuelled compact 
vehicle (e.g. a hybrid compact) given the similarity in vehicle type. The most basic model, a 
Multinomial Logit (MNL) model, cannot represent such substitution patterns, and there will be a 
proportional shift in probability towards all other vehicle type and fuel type combinations. 
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The typical approach for dealing with such an issue is estimating a Nested Logit (NL) model. For the 
sake of illustration, let us assume we’re in a situation where a respondent has six vehicles to choose 
from: 

A. Compact gasoline car 
B. Compact hybrid-electric car 
C. Compact gasoline car 
D. Compact gasoline SUV 
E. Compact flex fuel SUV 
F. Compact hybrid-electric car 

In this scenario, vehicles A, B, and C share the same vehicle type, as do vehicles D, E, and F. Vehicles 
A, C, and D share the same fuel type, as do vehicles B and F. Finally, vehicles A and C share the same 
vehicle type and the same fuel type. This provides ample source for correlation between 
alternatives. Various possible NL structures arise, as illustrated in Figure 2. In the first structure, we 
use a nesting by vehicle type approach, hence accounting for the correlation between options that 
share the same type of vehicle. As an example, if vehicle A was to become unavailable (or less 
attractive say due to a price increase), a respondent previously interested in this vehicle may be 
more likely to shift his/her interest to vehicles B or C than to vehicles D, E, or F. The second figure 
shows the corresponding two-level NL structure using nesting by fuel type. Here, we allow for 
heightened correlation between vehicles A, C, and D, and between vehicles B and F. It is a likely 
outcome that both structures reveal heightened substitution patterns between alternatives sharing 
the same vehicle type, or those sharing the same fuel type. This leads to a requirement for a 
structure that can jointly accommodate the two substitutions. A possible approach in this context 
comes in the use of a three-level NL structure, such as the one shown in the third example in Figure 
2, first nesting by vehicle type, and then by fuel type. It can immediately be seen that another 
option, not shown here, is to nest first by fuel type, and then by vehicle type. The model structure in 
Figure 2 still allows for correlation between the different compact cars, and for correlation between 
the different compact SUVs. Additionally, it allows for even higher correlation between the two 
gasoline cars, i.e. options A and B. However, given the ordering of the nesting levels, the model is 
unable to account for the correlation between two options sharing the same fuel type but being of 
different vehicle type. As an example, we would expect options B and F to be closer substitutes for 
each other, but the model treats their errors as completely independent. The issue here is that when 
using a multi-level NL model for multi-dimensional choice processes, the full correlation can only be 
accommodated along the highest dimension of nesting in the tree, an issue that was to our 
knowledge first discussed by Hess & Polak (2006) in an air travel behaviour context. 

The solution put forward by Hess & Polak (2006) is to use a CNL structure (cf. Vovsha, 1997), as 
illustrated in Figure 3, for the present scenario. Here, we make use of two separate vehicle type 
nests and three separate fuel type nests, with each alternative falling into one vehicle type nest and 
one fuel type nest1. In the resulting structure, we have correlation between those alternatives 
sharing the same vehicle type (i.e. A, B, C, and D, E, F), and vehicles sharing the same fuel type (i.e. A, 
C, D, and B, F), with even higher correlation for those alternatives sharing the same vehicle type as 
well as the same fuel type (i.e. A and C). 

                                                           
1
 On a technical aside, the CNL specification works by allocating an alternative by different proportions into 

different nests, collapsing back to a NL model when all allocation parameters are equal to 1, i.e. an alternative 
belongs into one nest one. In the present context, the allocation parameters were all fixed to a value of 1/2, 
meaning that an alternative belongs to one vehicle type nest and one fuel type nest. The estimation of actual 
values for the two non-zero allocation parameters for each alternative would have been very difficult due to 
the high degree of non-linearity and would arguably not have provided any further benefits from an 
interpretation perspective. 
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Specification of choice set 

With the above approach of characterising alternatives along two dimensions, we obtain 105 
combinations of vehicle types and fuel types. With the survey making use of four separate SP 
alternatives, and each alternative potentially taking on one of those 105 combinations, the model 
implementation actually made use of four sets of 105 utility functions, i.e. a total of 420 alternatives, 
of which exactly four were available in each choice situation 

Model estimation 

All model estimation and forecasting work reported in this paper were carried out using BIOGEME 
(Bierlaire, 2005), which is easily capable of dealing with such a large CNL structure. One further point 
needs addressing. The data used in this survey contains multiple observations for each respondent, 
potentially leading to correlations amongst choices for the same respondent. In the present work, 
this was not recognised in the modelling work for two reasons. The use of a random coefficients 
approach was not practical for computational reasons (the estimated models already took several 
hours without this added complication) and the use of the Jacknife approach (see e.g. Ortúzar, 1997) 
is not supported by BIOGEME, the only software well versed at estimating the complex model 
structure used in this paper. From this perspective, some of the estimates with a lower degree of 
significance should be treated with caution, given the possible underestimation of standard errors 
resulting from a cross-sectional estimation on repeated choice data. 

Empirical results 

The estimation results for the different discrete choice models are summarised in Table 1 for the 
main results and Table 2 for the nesting parameters for the NL and CNL models. Our first observation 
is that the NL model using nesting by fuel type gives us an improvement in model fit over the MNL 
model by 12.43 units in log-likelihood (LL), which is highly significant, coming at the cost of just six 
additional parameters. These additional parameters are nesting parameters which we will return to 
below. Similarly, the NL model using nesting by vehicle type improves LL (compared with MNL) by 
18.74 units, at the cost of 11 additional parameters. This is highly significant, as is the 34.93 unit 
improvement for the CNL model (compared with MNL), at the cost of 17 additional parameters. 
Finally, a likelihood ratio test cannot be used in this case to compare the CNL model to the NL due to 
the extra constraint on one of the nesting parameters in the CNL model, but the adjusted ρ2 measure 
shows a small additional improvement. 

Actual estimation results in Table 1, with a few exceptions, show very similar parameter estimates 
across the four models, with the real differences between the models becoming apparent later on in 
the forecasting exercise. Going through the various estimates in turn, the values for the three 
constants suggest some allegiance to the reference alternative, along with a small amount of reading 
left to right impact. Further evidence of inertia is given by the two following estimates, showing that 
respondents are highly likely to choose a vehicle of their initially intended vehicle type and to a 
slightly lesser extent the same fuel type. Without attempting to read too much into the various 
vehicle type and fuel type constants, the large negative values for the CNG and full electric vehicles 
do stand out, suggesting that additional incentives/improvements are required to increase the 
attractiveness of such vehicle given the low baseline preference. There is clear evidence of 
decreasing attractiveness with increasing age, while the various incentives have a positive impact on 
utility. All different cost components lead to reductions in utility, though the vehicle price sensitivity 
is reduced as income increases. Better acceleration, longer range, better fuel efficiency and 
improved fuel availability all have positive impacts on utility, while large households show the 
expected preference for larger vehicles, and the attractiveness of alternative fuel vehicles reduces 
with vehicle size. 
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We next turn our attention to the nesting parameters, which explain the correlation between 
alternatives grouped together in a nest, where these parameters, shown in Table 2, are constrained 
to be between 0 and 1, with lower values meaning higher correlation. The base value of 1 equates to 
an absence of correlation (as in a MNL model) and for this reason, the t-ratios are calculated with 
respect to a base value of 1 rather than 0. Looking first at the model using nesting by fuel type, we 
observe that the nesting parameter for full electric vehicles has collapsed to a value of 1, indicating 
no heightened correlation between different full electric vehicles. In addition, the values for the 
nesting parameters for three other fuel types, namely Flex Fuel/E85, Clean Diesel, and Compressed 
Natural Gas, are close to 1 and not significantly different from 1, suggesting that only low levels of 
correlation arise in these contexts. However, high correlation is observed between different gasoline 
cars, and also between different hybrid-electric cars, suggesting in each case the presence of 
heightened substitution patterns and greater fuel type allegiance. In the model using nesting by 
vehicle type, a number of nesting parameters once again collapse to a value of 1, while high 
correlation is, for example, observed in the Small cross-utility SUV nest and the Compact pick-up 
truck nest. Overall, the picture in the CNL model is the combination of the NL results, with the 
exception that we now observe high correlation in the Flex Fuel/E85 nest, and that the nesting 
parameter for the Compressed Natural Gas, already close to 1 in the NL model, has now collapsed to 
a value of 1. 

Forecasting example 

A brief forecasting exercise produces a final illustration of the differences between the various 
models estimated in this paper. Clearly, rescaling of the model outputs and correction of the 
constants would be required before undertaking any forecasting for the purposes of guiding policy 
makers (cf. Louviere et al., 2000), but the aim of this example is purely illustrative. 

In this forecasting exercise, all 105 combinations of fuel type and vehicle type are available to a 
single respondent. We further assume that this respondent currently owns a subcompact gasoline 
vehicle, has an annual mileage of 13,500, and comes from a household falling into the average 
income category and four or fewer members. Finally, we assume that this respondent is solely 
interested in new cars. Our forecasting exercise starts by working out the probabilities for the 105 
combinations of vehicle type and fuel type, with the four different models estimated in this paper. 
Next, we assume that following a government policy intervention, there is a reduction in the cost of 
Plug-in Hybrid Electric vehicles (fuel type 6) by $4,000, on the condition that they also fall into the 
Subcompact car, Compact car or Mid-size car categories (vehicle types 1, 2, and 3).  

Table 3 presents the changes in probabilities that arise as a result of this change in the attribute for 
these three vehicles. In the MNL model, we observe an equal increase in the probabilities for the 
three concerned vehicles, where this is drawn proportionally from all remaining vehicles as a result 
of the independently distributed errors and the resulting absence of unmodelled correlation in this 
model. In the model nested by fuel type, we observe a bigger increase in the probability for the 
three vehicles than in the MNL model, but, with more of the increase in probability drawn from the 
remaining Plug-in Hybrid Electric vehicles than other fuel types. The overall increase in the 
probability for Plug-in Hybrid Electric options, across vehicle type, is far less marked. Both of these 
effects are consistent with intuition. However, the changes in this model draw proportionally from 
all other non Plug-in Hybrid Electric Vehicles, independently of the fuel type, which may again not be 
completely realistic. 

In the model nested by vehicle type, we observe a bigger draw away from those options with the 
same vehicle type but with different fuel types (i.e. all non “Plug-in Hybrid Electric” subcompact, 
compact and mid-size cars). However, we also observe that the actual changes are different across 
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the first three vehicle types. This results from different levels of correlation in these nests, with 
higher correlation leading to higher competition. With the nesting parameter (cf. Table 2) being 
lowest in the mid-size car nest, followed by the compact car and the subcompact car nests, the 
changes are also largest in that order. This model correctly recognises that a larger share of the draw 
will come from other options in the same vehicle type categories, such that the increase in the 
overall share for the three vehicle types is less marked than in the first two models. However, the 
model doesn’t recognise the fact that a bigger draw will also come from other Plug-in Hybrid Electric 
vehicles. Indeed, for a given vehicle type, all the different fuel types are affected in the same way, 
including in the case of Plug-in Hybrid Electric. This overstates the overall increase for the probability 
of that fuel type, especially when compared to the model using nesting by fuel type. Finally, while 
due to aggregation, the overall changes (i.e. when grossing up across categories) are similar in the 
CNL and MNL models, the model arguably gives a more intuitively meaningful representation of the 
changes in probabilities of individual vehicle type and fuel type combinations, with bigger reductions 
in probabilities for those alternatives that either are of the “Plug-in Hybrid Electric” fuel type or are 
of the “Subcompact car”, “Compact car” or “Mid-size car” vehicle type.  

Extensions to GEV mixture models 

As an additional extension, we estimated four mixture equivalents of the models reported in Table 1, 
namely a Mixed MNL model, a Mixed NL model using nesting by fuel type, a Mixed NL model using 
nesting by vehicle type, and a mixed CNL model. The results are summarised in Table 4. These 
models took significantly longer to estimate, with the Mixed CNL model taking over a week to 
converge; as such, these highly complex models are even more difficult to use in practice, but 
provide further insights into behaviour by allowing for random taste heterogeneity on top of the 
complex correlation structure. In our mixture models, we allowed for random heterogeneity in six 
marginal utility coefficients, namely the three cost components (fuel cost, maintenance cost, and 
vehicle price), and three performance indicators (acceleration, range, and miles per gallon 
equivalent). The results show that all four models lead to very substantial increases in model fit 
compared to their fixed coefficient counterparts, as a result of allowing for the random taste 
heterogeneity. The actual performance of the different models is very similar, but the implied 
behaviour is very different across models. Along with the earlier discussed differences in terms of 
substitution patterns, which are largely carried over into the mixture analogues, there are also 
differences in the retrieved degree of random taste heterogeneity (expressed in Table 4 in the form 
of the coefficient of variation). Here, we observe, overall, a drop in the degree of heterogeneity once 
we accommodate the correlation structure, which would highlight confounding between these two 
phenomena in the simple Mixed MNL model. Additionally, the two Mixed NL models are more 
similar to each other in terms of the retrieved heterogeneity, than is the case for the Mixed CNL 
model. 

Conclusions  

This paper is a modelling analysis of vehicle type and fuel type choices of California consumers, 
captured through a stated preference survey. In this experiment, respondents were faced with a 
number of scenarios that presented them with a choice between four vehicles, of varying vehicle 
and fuel types. 

The main aim of the present paper was to investigate the prevalence of correlation along these two 
dimensions of choice, i.e. the influence of unmodelled components on the choice processes specific 
to given vehicle and fuel types with heightened likelihood of substitution between options of the 
same vehicle type or the same fuel type. 
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Our theoretical discussions show how the standard approach for dealing with such correlation, 
namely a Nested Logit model, may not be appropriate, as it is unable to capture the full extent of 
correlation along both the vehicle type and the fuel type dimension. Instead we suggest the use of a 
Cross Nested Logit model structure, and show how this model offers better performance in 
estimation and produce substitution patterns that are more in line with a priori expectations. 

The authors recognise that, especially in the context of large scale forecasting systems, the use of 
these model structures may not be currently possible due to its computational requirements, leaving 
practitioners with the option to incorporate any such correlations in the modelled utility 
components of the more basic models such as MNL. However, advanced nesting structures remain 
an important avenue for future applied work. The use of advanced GEV mixtures is of course even 
more demanding, where the mixed GEV structures estimated here are amongst the most complex 
estimated to date. 

In closing, it should also be mentioned that, in the present paper, we have solely investigated the 
correlation between alternatives sharing the same vehicle type, and the same fuel type. But there 
may also be correlations between vehicles of different but similar type, such as compact and sub-
compact cars, and incorporating such cross-type correlation is an important area for future work. 
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Table 1: Estimation results for different discrete choice models 

 

  MNL NL fuel NL vehicle CNL 
 LL -7681.257 -7668.826 -7662.514 -7646.331 
 par 44 50 55 61 
 adj. rho^2 0.262 0.263 0.263 0.264 
          

  est. t-rat. est. t-rat. est. t-rat. est. t-rat. 

Constants 

Vehicle A constant 0.849 13.54 0.51 7.05 0.664 10.38 0.409 5.54 

Vehicle B constant 0.157 3.48 0.154 3.61 0.147 3.62 0.143 3.63 

Vehicle C constant 0.0403 0.87 0.0451 1.03 0.0319 0.77 0.0361 0.9 

Vehicle Type Inertia 0.988 21.74 0.933 20.08 1.18 21.15 1.09 18.77 

Fuel Type Inertia 0.209 2.89 0.585 6.42 0.177 2.79 0.465 4.72 

Vehicle type 

Subcompact car 0 - 0 - 0 - 0 - 

Compact car -0.143 -1.54 -0.144 -1.62 -0.109 -1.16 -0.111 -1.3 

Mid-size car 0.246 2.6 0.23 2.56 0.247 2.59 0.238 2.76 

Large car -0.128 -1 -0.097 -0.81 -0.213 -1.65 -0.162 -1.28 

Sport car 0.0289 0.25 0.0632 0.57 -0.0243 -0.21 0.00135 0.01 

Small cross-utility car 0.424 3.97 0.393 3.9 0.41 3.85 0.396 3.93 

Small cross-utility SUV 0.29 2.38 0.302 2.64 0.258 2.16 0.274 2.21 

Mid-size cross-utility SUV 0.141 1.04 0.153 1.18 0.0793 0.6 0.0988 0.75 

Compact SUV 0.433 3.22 0.422 3.32 0.369 2.8 0.389 2.85 

Mid-size SUV 0.319 2.37 0.306 2.41 0.241 1.8 0.262 2.34 

Large SUV 0.443 2.82 0.424 2.91 0.343 2.16 0.363 2.52 

Compact van 0.0405 0.28 0.0463 0.35 -0.0232 -0.16 -0.00283 -0.02 

Large van -0.591 -3.22 -0.538 -3.14 -0.618 -3.49 -0.551 -3.08 

Compact pick-up truck 0.0277 0.22 0.0377 0.32 0.00316 0.03 0.0291 0.25 

Standard pick-up truck -0.0608 -0.48 -0.0364 -0.31 -0.159 -1.24 -0.0999 -0.76 

Fuel type 

Standard Gasoline 0 - 0 - 0 - 0 - 

Flex Fuel/E85 0.304 3.64 0.297 3.6 0.271 3.66 0.314 4.19 

Clean Diesel 0.301 2.37 0.241 1.92 0.268 2.36 0.214 1.87 

Compressed Natural Gas -2.15 -2.05 -2.2 -2.11 -1.7 -1.89 -1.9 -2.03 

Hybrid-electric 0.197 2.32 0.176 2.1 0.188 2.53 0.171 2.29 

Plug-in Hybrid-electric 0.538 7.74 0.509 7.42 0.467 7.54 0.445 7.42 

Full Electric -2.86 -3.72 -3 -3.92 -2.4 -3.59 -2.64 -3.79 

Age 
1 or 2 years old -0.209 -3.32 -0.193 -3.25 -0.187 -3.35 -0.174 -3.24 

3 or more years old -0.426 -8 -0.397 -7.94 -0.404 -8.56 -0.384 -8.68 

Incentives 

HOV lane use 0.0606 1.02 0.0699 1.2 0.0424 0.8 0.0472 0.88 

Free parking 0.0446 0.74 0.0443 0.76 0.0362 0.68 0.0306 0.58 

$1,000 tax credit 0.185 3.09 0.181 3.13 0.16 3.02 0.157 3.09 

$1,000 reduced purchase price 0.0706 1.18 0.0687 1.17 0.0543 1.01 0.0561 1.04 

Costs 

Vehicle price -0.0744 -14.19 -0.0702 -13.89 -0.0689 -14.06 -0.0653 -13.87 

Vehicle price * income cat 0.00684 6.52 0.00663 6.76 0.00629 6.56 0.00618 6.78 

Fuel costs -0.158 -4.92 -0.158 -5.06 -0.136 -4.51 -0.133 -4.37 

Maintenance costs -0.0579 -3.11 -0.0546 -3.13 -0.0525 -3.2 -0.0481 -3.05 

Performance, 
efficiency, 
and fuel 

availability 

MPGE 0.0241 8.52 0.025 8.97 0.0212 8.23 0.0224 8.46 

Range 0.285 1.48 0.292 1.52 0.213 1.29 0.242 1.41 

Acceleration (seconds to 60mph) -0.0406 -5.33 -0.0393 -5.5 -0.0375 -5.61 -0.0357 -5.55 

Plug-in at work and other locations (EV) 0.123 0.94 0.119 0.92 0.123 1.11 0.118 1.05 

1 in 20 Stations (CNG) 0.329 2.23 0.324 2.21 0.306 2.37 0.31 2.25 

Other 

Large HH - Medium vehicles 0.395 2.97 0.401 3.21 0.384 2.91 0.36 2.84 

Large HH - Large vehicles 0.728 4.33 0.693 4.4 0.72 4.27 0.659 4.07 

Alt Fuel - Medium vehicles 0.0884 1.21 0.0633 0.9 0.0853 1.28 0.0564 0.74 

Alt Fuel - Large vehicles -0.137 -1.26 -0.154 -1.48 -0.154 -1.55 -0.161 -1.52 
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Table 2: Estimation results (part 2) 

  NL (fuel type) NL (vehicle type) CNL 

  est. t-rat. (1) est. t-rat. (1) est. t-rat. (1) 

Fuel type 

Standard Gasoline 0.68 -8.76 - - 0.40 -8.45 

Flex Fuel/E85 0.76 -0.51 - - 0.08 -436.40 

Clean Diesel 0.82 -1.27 - - 0.80 -0.86 

Compressed Natural Gas 0.90 -0.18 - - 0.97 -0.02 

Hybrid-electric 0.56 -4.82 - - 0.46 -5.66 

Plug-in Hybrid-electric 0.74 -4.83 - - 0.60 -4.82 

Full Electric 1.00 - - - 1.00 - 

Vehicle 
type 

Subcompact car - - 0.90 -1.11 0.81 -1.33 

Compact car - - 0.72 -7.18 0.53 -10.88 

Mid-size car - - 0.71 -7.54 0.48 -9.63 

Large car - - 1.00 - 1.00 - 

Sport car - - 1.00 - 1.00 - 

Small cross-utility car - - 0.77 -2.11 0.65 -2.31 

Small cross-utility SUV - - 0.61 -6.52 0.37 -16.47 

Mid-size cross-utility SUV - - 0.75 -1.92 0.66 -1.14 

Compact SUV - - 0.68 -2.11 0.15 -38.82 

Mid-size SUV - - 0.77 -2.40 0.60 -2.73 

Large SUV - - 0.76 -0.77 0.40 -3.85 

Compact van - - 1.00 - 1.00 - 

Large van - - 0.63 -2.91 0.47 -4.28 

Compact pick-up truck - - 0.71 -2.35 0.39 -5.64 

Standard pick-up truck - - 1.00 - 1.00 - 
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Table 3: Forecasting example 

MNL  NL (fuel type) 

                     

  Fuel type     Fuel type  

  1 2 3 4 5 6 7 Total    1 2 3 4 5 6 7 Total 

V
e

h
ic

le
 t

yp
e

 

1 -1.28% -1.28% -1.28% -1.28% -1.28% 17.55% -1.28% 9.88%  

V
e

h
ic

le
 t

yp
e

 

1 -1.23% -1.23% -1.23% -1.23% -1.23% 19.92% -1.23% 12.54% 

2 -1.28% -1.28% -1.28% -1.28% -1.28% 17.55% -1.28% 9.88%  2 -1.23% -1.23% -1.23% -1.23% -1.23% 19.92% -1.23% 12.54% 

3 -1.28% -1.28% -1.28% -1.28% -1.28% 17.55% -1.28% 9.88%  3 -1.23% -1.23% -1.23% -1.23% -1.23% 19.92% -1.23% 12.54% 

4 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  4 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

5 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  5 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

6 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  6 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

7 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  7 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

8 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  8 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

9 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  9 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

10 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  10 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

11 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  11 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

12 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  12 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

13 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  13 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

14 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  14 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

15 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.94%  15 -1.23% -1.23% -1.23% -1.23% -1.23% -3.79% -1.23% -11.18% 

 Total -19.16% -19.16% -19.16% -19.16% -19.16% 37.31% -19.16%    Total -18.46% -18.46% -18.46% -18.46% -18.46% 14.26% -18.46%  

                     

NL (vehicle type)  CNL 

                     

  Fuel type     Fuel type  

  1 2 3 4 5 6 7 Total    1 2 3 4 5 6 7 Total 

V
e

h
ic

le
 t

yp
e

 

1 -1.69% -1.69% -1.69% -1.69% -1.69% 17.80% -1.69% 7.67%  

V
e

h
ic

le
 t

yp
e

 

1 -1.52% -1.48% -1.54% -1.45% -1.53% 19.05% -1.46% 10.08% 

2 -2.40% -2.40% -2.40% -2.40% -2.40% 22.27% -2.40% 7.88%  2 -2.70% -3.17% -2.25% -1.44% -2.56% 24.78% -1.52% 11.13% 

3 -2.64% -2.64% -2.64% -2.64% -2.64% 22.23% -2.64% 6.42%  3 -3.57% -4.46% -2.74% -1.69% -3.38% 26.15% -1.57% 8.73% 

4 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  4 -1.20% -1.20% -1.20% -1.20% -1.20% -2.23% -1.20% -9.43% 

5 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  5 -1.20% -1.20% -1.20% -1.20% -1.20% -2.64% -1.20% -9.84% 

6 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  6 -1.20% -1.20% -1.20% -1.20% -1.20% -3.54% -1.20% -10.74% 

7 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  7 -1.20% -1.20% -1.20% -1.20% -1.20% -3.57% -1.20% -10.77% 

8 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  8 -1.20% -1.20% -1.20% -1.20% -1.20% -2.77% -1.20% -9.97% 

9 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  9 -1.20% -1.20% -1.20% -1.20% -1.20% -5.71% -1.20% -12.91% 

10 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  10 -1.20% -1.20% -1.20% -1.20% -1.20% -2.98% -1.20% -10.18% 

11 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  11 -1.20% -1.20% -1.20% -1.20% -1.20% -3.05% -1.20% -10.25% 

12 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  12 -1.20% -1.20% -1.20% -1.20% -1.20% -2.23% -1.20% -9.43% 

13 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  13 -1.20% -1.20% -1.20% -1.20% -1.20% -2.78% -1.20% -9.98% 

14 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  14 -1.20% -1.20% -1.20% -1.20% -1.20% -3.56% -1.20% -10.76% 

15 -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -1.32% -9.27%  15 -1.20% -1.20% -1.20% -1.20% -1.20% -2.11% -1.20% -9.31% 

 Total -22.61% -22.61% -22.61% -22.61% -22.61% 46.42% -22.61%    Total -22.19% -23.52% -20.94% -18.98% -21.87% 32.83% -18.96%  
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Table 4: Summary of results for Mixed GEV models 

 Mixed MNL Mixed NL (fuel) Mixed NL (vehicle) Mixed CNL 

Model fit for base model 0.262 0.263 0.263 0.264 

Model fit for mixture model 0.314 0.314 0.316 0.316 

     

Coefficient of variation Mixed MNL Mixed NL (fuel) Mixed NL (vehicle) Mixed CNL 

Acceleration 2.68 2.54 2.46 1.97 

Range 12.18 9.39 9.75 5.45 

Miles per gallon equivalent 6.88 6.92 6.64 7.49 

Fuel cost 1.82 1.91 2.08 1.65 

Maintenance cost 1.50 0.14 0.44 1.25 

Price 1.00 1.02 1.00 1.08 
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Figure 1: Example Stated Preference Exercise 
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Figure 2: Different possible NL structures 
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Figure 3: CNL structure 
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