

UNIVERSITY of NEW HAMPSHIRE

Robert Chamberlin, PE/PTOE Ben Swanson Eric Talbot, EIT Jeff Dumont Steve Pesci, Univ. of New Hampshire Utilizing MOVES' Link Drive Schedule for Estimating Project-Level Emissions

Prepared for: TRB Workshop on Integrating MOVES with Transportation Microsimulation Models

2/2/2011

Overview

- Motivation Develop an Analytical Approach that Practitioners Can Use
- What is a Project-Level Analysis?
- A Spectrum of Tools -- Microsimulation-Air Emissions Models
- Points of Connection
- The Analysis Testbed An Intersection Control Change
 - Signalized Intersection Roundabout All Way Stop
- Connecting the Microsimulation Model to MOVES
 - Developing a Link Drive Schedule
- Results and Recommendations for Future Research

Motivation

- Why Connect a Traffic Microsimulation Model to MOVES?
- Regulatory requirement: EPA May 2010 guidance for performing "project-level" transportation conformity analysis
 - "Hot Spots" analysis, PM and CO
- Increasing Need from Other Quarters of Society for Tools to Estimate Emissions Impacts of Traffic Operational Changes
 - CMAQ requirement of the emissions benefits of a proposed project
 - City of Portland, OR CO2 offsets from signal optimization
 - State regulations (e.g. Massachusetts Environmental Policy Act)
 - Sustainability initiatives (e.g. University of New Hampshire)
- An Approach that Practicing Traffic Engineers Can Use

What is a "Project Level" Analysis?

- MOVES Project-Level Analysis
 - Projects of Local Air Quality Concern:
 - Within PM10 Non-Attainment or Maintenance Areas
 - Include High % of Diesel Trucks
- Examples:
 - High volume highways (>125,000 AADT) with >8% diesel trucks
 - New highway facilities connecting to a major intermodal terminal
 - Highway expansion affecting an existing congested intersection (LOS D-F) with an increase in diesel trucks
 - A "regionally significant project" defined in 40 CFR 93.101
- What Are Our Options for Performing this Type of Analysis?

A Spectrum of Tools – Microsimulation/Emission Model Pairings

re		Emissions Software	
JN		Versit+micro	
DN		VT-Micro	
ics		CMEM	
IM		Versit	
IM		PHEM	
٨S		MOVES	
IM		VeTESS	
fic	c TREMOVE		
		COPERT (EEA)	
		ModEM	

Microsimulation Software				
AIMSUN				
INTEGRATION				
Paramics				
VISSIM				
VISSIM				
TRANSIMS				
CORSIM				
Synchro/SimTraffic				

A Spectrum of Tools - Microsimulation/Emission Model Pairings

Microsimulation Software			Emissions Software
AIMSUN	AIMSUN	←→ Versit+micro	Versit+micro
INTEGRATION	INTEGRATION	VT-Micro	VT-Micro
Paramics	Paramics		CMEM
VISSIM	VISSIM	←→ Versit	Versit
VISSIM	VISSIM	нем	PHEM
TRANSIMS	TRANSIMS	←→ MOVES	MOVES
CORSIM			VeTESS
Synchro/SimTraffic			TREMOVE
			COPERT (EEA)
			ModEM

- Points of connection:
 - Vehicle characteristics (fleet age mix, power/weight)
 - Environmental characteristics (meteorological)
 - Network characteristics (functional class, grade)

Vehicle trajectories (speed/accel profiles)

Points of Connection-- Vehicle Trajectory Files

7

Points of Connection -- Vehicle Trajectory Files

Average Speed

- Widespread recognition that the "average speed approach" is insufficient to capture the environmental impacts of vehicle travel.
- "Two "trips" that have the same average speed can have drastically different emissions results depending on whether the trip was made on free flowing arterials or on a congested freeway." *Barth, et al NCHRP 25-11*
- "...for the same average speed, one can observe widely different instantaneous speed and acceleration profiles, each resulting in very different fuel consumption and emission levels." Rakha and Ahn
- Operating Mode Distributions
- Link Drive Schedules....a "How To"

The Analysis Testbed

- 3-Leg Intersection Modeled as Pretimed Signal, Roundabout, and All Way Stop
- 0.5 mile approach link, 30 mph
- Two sets of traffic volumes
 - 850 vehicles/hour (LOS B, 11 seconds/vehicle)
 - 1700 vehicles/hour (LOS D, 35 seconds/vehicle)
- One vehicle type Passenger Car (ID=21)

A Practical Matter on Data Production and Run Time

- Low volume runs 850 vehicles/hour
- High volume runs 1700 vehicles/hour
- 150-300 records per vehicle
- 120,000 500,000 records either...
 - A VERY long MOVES run, or
 - Too much for the MOVES LDS?

How to Process the Traffic Model Output for Input to MOVES?

- How to manage thousands of records? Two steps:
- Step 1: K-Means Algorithm to Cluster "Like" Trajectories
 - Minimizes the Least Squared Differences Among a Set of X Observations into K clusters...

What the K-Means Algorithm Produces

What the K-Means Algorithm Produces

What the K-Means Algorithm Produces

Every Bin is a MOVES Drive Schedule

What Else You Need -- # of Vehicles per Bin and Average Speed of Bin

The Link Drive Schedule

- Step 2: LOESS (Locally Weighted Scatterplot Smoothing)
 - Creates one drive schedule representing many "like" trajectories
 - The Link Drive Schedule is a Key Input into the MOVES Run Specification File for Project-Level Analysis

Results - VISSIM High Volume (1700 vph) - CO2

Results - VISSIM High Volume (1700 vph) - PM2.5

Results - VISSIM High Volume (1700 vph) - NOx

Results - Comparison Across Different Microsimulators

21

Findings and Future Work

Findings

- In Using the Link Drive Schedule Approach:
 - Utilize a k-means algorithm to classify vehicle trajectories into MOVES "links"
 - Utilize Locally Weighted Scatterplot Smoothing (LOESS) to reduce a bin of similarly-classified trajectories into a characteristic Drive Schedule
 - Uses Normal MOVES Run Specification File Executed as a Project-Level Scenario

Methodological Questions

- How to appropriately define the geographic bounds of the "project area"?
- If the "project area" is a small portion of a larger microsimulation model, how to manage the emissions from the rest of the network, sequester the vehicles that traverse the "project area"?
- How to best manage the many "degrees of freedom"? i.e. differences in traffic simulation packages?
- What is the correct number of bins to minimize sampling error? Latent cluster analysis.

Research Begets Research

- What is the practical limit of modeling vehicle trajectories? How many unique trajectories can MOVES handle?
- Are there significant differences in vehicle trajectory files produced by different microsimulation packages that affect their pre-processing into Link Drive Schedules?

For More Information...

Session 479 - Current Environmental Issues in Transportation

- Poster Session (Paper 11-0673)
- Tuesday 25 January, 9:30-12:30
- Hilton International Center

