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EXECUTIVE SUMMARY 
 

  

While obtaining visitation estimates is straightforward at parks that require all visitors to pay a fee and 
pass through a main entrance, there are many parks that deviate substantially from this ideal.  In these 
situations, one faces difficult decisions with regard to the allocation of field effort, as it is typically 
prohibitively expensive to continuously count visitors at numerous entrances over long time periods.  
Random sampling of days and entrances can reduce costs, but this introduces statistical complexity and 
sampling error.   Alternatively, automated vehicle or pedestrian counters can be installed at visitor 
entrances, but counters must be carefully deployed, monitored, and calibrated.  Off-site surveys can be 
used to develop visitation estimates, but the development and implementation of off-site surveys 
requires a specialized set of skills.     

Given these challenges, selecting and implementing an appropriate visitor count methodology at any 
given park requires a unique combination of (1) detailed, park-specific knowledge, and (2) technical 
expertise in several somewhat disparate fields, including statistical sampling, traffic engineering, and 
survey design.  While excellent reference texts exist within each of these fields, they are often 
somewhat inaccessible to non-experts and they do not focus on park visitation.  This report aims to 
provide a comprehensive overview of methods for estimating park visitation, extracting relevant 
information from related fields and presenting it in a manner that is accessible to researchers and park 
personnel.   

Although park visitation estimates may be useful in a variety of contexts, this report is primarily 
intended to inform efforts to develop visitation estimates for natural resource damage assessments.  
Natural resource damage assessments (NRDAs) are conducted by government agencies at sites where 
natural resources may have been injured due to a release of oil or hazardous substances.  These injuries 
can lead to recreational losses at parks when the value that the public derives from the park is reduced 
due to a temporary closure or advisory.  Assessments of recreational losses in NRDAs typically require an 
estimate of the change in recreational trips resulting from the closure/advisory. 

The report is divided into four chapters: 

 Chapter 1: Overview of Statistical Sampling Techniques:  Chapter 1 provides an overview of four 
sampling approaches frequently applied in studies designed to obtain park visitation estimates: 
simple random sampling, stratified random sampling, cluster sampling, and systematic sampling.  
For each type of sampling, the intuition and mathematics are explained in detail (including 
formulas for estimating the population total and its variance), and a concrete example is 
provided.  The chapter concludes with a brief overview of ratio estimation and sampling 
weights. 

 Chapter 2: On-Site Counts by Field Personnel:  Chapter 2 provides an overview of available 
methodologies for implementing on-site count studies.  The emphasis is primarily on 
methodologies that involve departure counts at site entrances.  The chapter begins by 
discussing simple designs where time periods are randomly sampled and all entrances are 
monitored by field personnel during every selected time period.  It then allows for random 
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sampling of one or more entrances in addition to time periods.  The chapter concludes with a 
discussion of instantaneous on-site counts such as airplane overflights.  

 Chapter 3: Automated Counters:  Chapter 3 describes the use of automated counters and video 
cameras to estimate visitation in parks.  The chapter begins with an overview of the automated 
count process, including technical and practical challenges that arise with a variety of devices.  It 
then provides a detailed description of available technologies, describing advantages and 
disadvantages associated with each.  The chapter concludes with summary recommendations 
for specific visitor count contexts, such as unpaved trails, paved paths/trails, and entrance 
roads.   

 Chapter 4: Off-Site Surveys:  This chapter describes the use of off-site surveys to develop trip 
estimates.  The chapter begins by discussing the types of situations where an off-site survey is 
likely to be useful.  This discussion is followed by a brief comparison of the sampling contexts for 
on-site counts versus off-site surveys.  Next, a detailed description of the steps required to 
implement an off-site survey is provided.  The chapter concludes with a discussion of several 
challenges specific to off-site surveys:  nonresponse bias, recall error, and cell-only households.    
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CHAPTER 1 

 

 

OVERVIEW OF STATISTICAL SAMPLING 

TECHNIQUES 

 

 

This chapter provides an overview of statistical techniques that underlie attempts to estimate visitation 
at national parks and other public lands.  At its core, estimating visitation is a statistical sampling 
problem.  With the exception of the very simplest of parks, it is typically infeasible to directly count 
every single visitor that enters a park.  Consequently, it is necessary to sample visitors in some way, then 
extrapolate from the sample to obtain an estimate of visitation.  This chapter discusses a variety of ways 
in which visitors can be sampled, laying out the intuition and the mathematics underlying each sampling 
technique.1   

We begin by introducing basic sampling concepts and terminology.  We then describe four different 
approaches to sampling that are frequently applied in studies designed to obtain visitation estimates: 
simple random sampling, stratified random sampling, cluster sampling, and systematic sampling.  For 
each type of sampling, we provide formulas for estimating the population mean and the population 
total, including standard errors.  The chapter concludes with a brief overview of ratio estimation and 
sampling weights.    

 

SAMPLING CONCEPTS   

The sampling unit is the individual item that we wish to measure, the population is the overall 
collection of sampling units that we would like to characterize, and the process of drawing a sample 
involves selecting a subset of sampling units from the population for careful examination.  Suppose, for 

                                                           
1 The report borrows heavily from introductory sampling texts such as Lohr (1999) and Cochran (1977), which do 
an excellent job in laying out the theory and intuition underlying sampling techniques.  Readers interested in 
additional detail are urged to consult those texts.   
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example, that we wanted to conduct a mail survey of licensed anglers in Washington State to determine 
the total number of fishing trips taken by in-state anglers to Lake Roosevelt.  In this case, each licensed 
angler would be a sampling unit, the population would be the set of all licensed anglers in the state, and 
the subset of anglers that we contact to obtain trip information would be the sample.   

 

It is important to clearly define the sampling units and population in any visitation study.  In addition, 
despite the common use of the term “population,” it is important to note that the definition for 
population considered here does not necessarily always involve people – it could involve trips, time 
periods, or geographic areas.  With on-site studies of visitation (e.g., on-site visitor counts at entrances), 
the population is often the set of all days within a season or year, and the sampling unit is a single day.  
In contrast, with off-site studies (e.g., mail surveys of the general population), the population is often 
defined as a set of households living within a specific geographic area, and the sampling unit is a single 
household.   

The sampling frame is simply a comprehensive list of sampling units from which the sample is selected.  
In the mail survey of licensed anglers described above, the sampling frame might be the subset of 
licensed anglers who provided a valid address when they purchased a fishing license.   In the case of a 
year-long on-site visitor count study, the sampling frame for selecting on-site count days might be the 
list of all 365 days in the year. 

Ideally, the sampling frame would be identical to the population, but there are typically at least minor 
differences.  For example, suppose we were interested in characterizing the population of Orange 
County, California households, and our sampling frame was a list of all Orange County residential 
addresses available from the U.S. Postal Service.  This sampling frame excludes some households who 
are in our population: it excludes households that moved into the county within the last few weeks and 
do not yet appear in the U.S. Postal Service database.  The sampling frame also includes some 
households who are not in our population: it would include individuals who had recently moved or 
passed away.   

The purpose of drawing a sample is to obtain a quantitative measurement for every selected unit in 
order to form an estimate of a population parameter.  We will use the variable “y” to represent these 
quantitative measurements, and we will use subscripts to denote specific units in the sample, so that 
the quantitative measurement associated with the first unit is represented by y1, the second unit by y2, 
and the ith unit by yi.  For example, if we sampled five individuals and used 𝑦𝑖  to represent the weight of 
the ith individual, then the sample might look like this: 
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                                             𝑦1=150        𝑦2=125          𝑦3=185        𝑦4=145          𝑦5=95 

Our goal will be to use information from the sample to estimate the population mean or total for y.2  
With studies designed to estimate park visitation, we are typically more interested in estimating a total 
than a mean.  Following the notation in Cochran (1977), we denote the true population mean by �̅� and 
the true population total by Y, and we denote estimates of these population parameters by using “hats”:  

�̂̅�  and �̂�.  For example, if there were 2.3 million visits to Yellowstone National park last year, but we 
obtained an estimate of 2.1 million visits based on counts conducted on a sample of days, then 𝑌 =

2.3 and �̂� = 2.1. 3   

The population total is defined as4  

𝑌 = ∑ 𝑦𝑖

𝑁

𝑖=1

= 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑁 

where N is the total number of sampling units in the population.  The population mean is defined as 

�̅� =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

=
𝑌

𝑁
 

 

The concept of sampling error is fundamental to sampling statistics and to expressions of the amount of 
uncertainty (e.g., standard error, confidence interval, etc.) associated with an estimate.  Sampling error 

is simply the difference between the estimate calculated from a specific sample (e.g., �̂�) and the true 
value of the population parameter (e.g., 𝑌).  Sampling error will differ from one sample to another, as 
each sample provides a different set of y values and therefore a different estimate.          

 

Example 1.1: Sampling Error 

Suppose the population of visitors to a particular park consists of exactly ten persons, and the following 
dataset represents the number of times each of these ten individuals visited the park last year: 

                                                           
2 One might also be interested in estimating a proportion rather than a mean or total (e.g., the proportion of 
visitors who participate in a given activity).  As this document focuses primarily on obtaining total visitation 
estimates, we do not provide separate formulas for proportions.  However, proportions can be estimated by 
simply using a binary (0/1) y variable in the formulas presented herein.  For example, we would estimate the 
proportion of units with a particular characteristics by letting y = 1 if the sampled unit has a particular 
characteristic and letting y = 0 if it does not.  Specific formulas for proportions are presented in Lohr (1999) and 
Cochran (1977). 
3 Note that in almost all sampling contexts, we won’t ever actually know the true values of  �̅� and 𝑌.  If we did, then 
we wouldn’t be conducting the study in the first place! 
4 The Σ notation is used to denote summations across sampling units.  For example, the expression ∑ 𝑦𝑖

𝑁
𝑖=1  

represents the sum of all values of y associated with the first through the Nth sampling units.  Thus, if there are 

three individuals in the population who take 5, 2, and 7 trips, then ∑ 𝑦𝑖 =𝑁
𝑖=1  (𝑦1 + 𝑦2 + 𝑦3) = (5 + 2 + 7) = 16. 
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Person No. Trips 

1 2 
2 7 
3 0 
4 0 
5 1 
6 5 
7 3 
8 2 
9 0 

10 0 

 
The population mean trips is �̅� = (2+7+0+0+1+5+3+2+0+0) ÷ 10 = 2.0 trips.  Suppose we draw a sample 
of five persons, and obtain the following responses when we ask how many times each person visited 
the park last year:  {7, 0, 1, 3, 0}.  In this case, the sample average is (7+0+1+3+0) ÷ 5 or 2.2 trips.  If the 
sample average is used to estimate the population mean, then the sampling error is 2.2 – 2.0 = 0.2 trips.  
The sampling error associated with three different (arbitrary) samples of five persons from this 
population is shown below: 
  
 Sample 1:   {2, 7, 5, 3, 0}  Sampling error = (17/5) – 2.0 = 1.4  
 Sample 2:   {0, 0, 1, 3, 0}  Sampling error = (4/5) – 2.0 =  -1.2 
 Sample 3:   {7, 1, 2, 0, 0}  Sampling error = (10/5) – 2.0 = 0.0   
 
 
 

Due to sampling error, our estimates will differ from the population parameters that we are trying to 
measure.  This certainly is not surprising; after all, we are only examining a sample from the population, 
not the entire population.  Sometimes the difference will be positive, sometimes it will be negative.  An 
estimator is described as unbiased if these positive and negative sampling errors balance out, on 
average.  That is, the estimator is unbiased if the average sampling error is expected to be zero across a 
very large number of samples.  Alternatively, the estimator is described as biased if the sampling error is 
expected to be greater or less than zero, on average.   

When reporting estimates based on a sample, it is customary to provide some measure of the degree to 
which variability in the sampling error may impact the results.  The measure that is frequently provided 
is the standard error.  The smaller the standard error, the more precise the estimate.  The formula for 
calculating standard error will vary depending on the sampling approach applied.  As a result, standard 
error formulas are presented in later sections, where specific sampling approaches are discussed.  
However, two cross-cutting themes arise in these formulas.  First, the standard error generally declines 
as the sample size (n) increases.  Larger sample sizes provide more information about the population, 
allowing us to estimate population parameters with greater precision.  Second, the standard error 
declines as population variance decreases.  The population variance is a measure of how “variable” or 
“spread out” the data are in the population from which we are drawing the sample: 
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It is easier to obtain precise estimates of population parameters when the population has a lower 
variance, or is less variable.  For example, we could obtain a more precise estimate of average daily 
temperature from a sample of days in Miami than from a similar-sized sample of days in Chicago.  
Temperatures in Miami are less variable than temperatures in Chicago, allowing us to squeeze more 
information about the population from the same amount of data.  

 

The population variance (S2) of y is defined as:       

𝑆2 =
∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1

𝑁 − 1
 

Ignoring the minus one in the denominator (which has very little practical impact), this is simply the 
average squared deviation from the mean.  One can see that if the values in the population are all fairly 
close to the mean, then each (𝑦𝑖 − �̅�) will be small, resulting in a variance that is also small.   

 
 

Example 1.2: Variance 

Consider two different (very small) visitor populations for a particular park, Group A and Group B.  
Suppose the number of annual trips per person for the two populations are as follows:   

Group  Person No. Trips 

A 1 3 
 2 5 
 3 7 
 4 5 
 5 5 

B 1 2 
 2 10 
 3 8 
 4 5 
 5 0 

 

Both populations take an average of exactly five trips per year to the park, but the distribution of visits is 
narrow for Group A and spread out for Group B.  The variances for Group A and B are calculated in the 
table below.  Note that the variance for Group A (S2=2) is much smaller than the variance for Group B 
(S2=17).   As a result, trip estimates based on random samples from Group A will tend to have smaller 
standard errors.    
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Variance for Group A: 

yi �̅� 𝑦𝑖 − �̅� (𝑦𝑖 − �̅�)2  
3 5 -2 4 
5 5 0 0 
7 5 2 4 
5 5 0 0 
5 5 0 0 

  Total: 8 
 

𝑆2 =
8

4
= 2 

 

 

Variance for Group B: 

yi �̅� 𝑦𝑖 − �̅� (𝑦𝑖 − �̅�)2  
2 5 -3 9 

10 5 5 25 
8 5 3 9 
5 5 0 0 
0 5 -5 25 

  Total: 68 
 

𝑆2 =
68

4
= 17 

 

 

  



Chapter 1: Overview of Statistical Sampling Techniques 
 

7 
 

SIMPLE RANDOM SAMPLING  

Simple random sampling is the workhorse of sampling statistics.  A simple random sample of n units is 
defined as a sample where every combination of n units in the population has an equal probability of 
being selected.  Although not technically equivalent, it is acceptable to think intuitively about simple 
random sampling as a process whereby every unit (rather than every combination of units) has an equal 
probability of being selected.  A simple random sample is depicted graphically in Exhibit 1.1.   

Exhibit 1.1: Simple Random Sample of Households Living Near a Park 

 

Simple random sampling can be conducted either “with replacement” or “without replacement.”  These 
phrases mean exactly what they seem to imply.  When sampling n units under simple random sampling 
with replacement, units may be sampled more than once.  When sampling n units under simple random 
sampling without replacement, each unit may only be selected once.  With visitor count studies, we will 
generally be dealing with simple random sampling without replacement.  As a result, unless we indicate 
otherwise, the expression “simple random sampling” can be interpreted as “simple random sampling 
without replacement” throughout this chapter.   

The sample mean for a simple random sample of size n is defined as the average value of y across all n 
units: 

�̅� =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
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while the sample variance is defined in a manner similar to the population variance: 5  

𝑠2 =
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
 

As with the population variance, the sample variance can be interpreted (approximately) as the average 
squared deviation from the mean.  The only difference is that the sample variance calculates this 
average for the units selected into the sample rather than for the entire population.  

Recall that our goal in sampling is to obtain estimates for population parameters.  With simple random 
sampling, the sample mean, or �̅�, provides an unbiased estimate of the population mean, or �̅�.   
However, although the sample mean correctly predicts the population mean on average, it will differ 
from the population mean for any particular sample.   It is therefore important to present a measure of 
the variability of �̅�.  The variance of �̅� is given by 

𝑉(�̅�) =
𝑆2

𝑛
(1 −

𝑛

𝑁
) 

 
(1.1) 

The interpretation of equation 1.1 is fairly straightforward when it is split into two parts.  The first part 

of the equation, 𝑆
2

𝑛⁄ , is the variance of �̅� for a random sample that is drawn from an infinite 
population.6  As one would expect, the variance of �̅� increases with the population variance S2:  if the 
units within the population are highly variable, then different random samples will provide estimates of 
the mean that are also highly variable.    

The variance of �̅� decreases as the sample size (n) increases.  This also conforms with our intuition:  a 
larger sample size provides additional information about the population, allowing us to estimate 
population parameters with greater precision.  Below, the variance of �̅� is plotted against sample size, 
holding S2 constant at one and assuming a large population.  Initially the variance declines steeply as the 
sample size increases.   However, as the sample size gets larger and larger, the marginal benefit of 
adding additional sample declines until it eventually approaches zero (Exhibit 1.2).     

                                                           
5 Note that lowercase letters are used to represent statistics calculated from the sample, while uppercase letters 
are used to represent population parameters.   
6 It is also the variance of �̅� when sampling is conducted with replacement. 
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The second part of equation 1.1, (1 −
𝑛

𝑁
), is called the finite population correction (fpc) (Cochran 1977, 

pg. 24).  This correction factor, which always lies between zero and one (since n can’t be greater than N), 
scales the variance downwards to adjust for fact that we typically draw our samples without 
replacement from finite, rather than infinite, populations.  Intuitively, if our sample represents a larger 

fraction of the population (i.e., 
𝑛

𝑁
 is large), we have more information about the population and can 

estimate the population mean with greater precision.  In the extreme case, if we sample every unit in 
the population, n = N, the fpc is zero, and the variance of �̅� is also zero (we know the population mean 
exactly).  Conversely, when the population is extremely large relative to the sample size, as is the case 
with most general population surveys, the fpc is close to one and can be ignored.   

Note that in nearly all sampling contexts, we do not know the population variance (S2), so we cannot 
actually calculate 𝑉(�̅�).  The solution is to estimate the population variance with the sample variance 
(i.e., replace S2 with s2) to obtain the following estimate of 𝑉(�̅�): 

�̂�(�̅�) =
𝑠2

𝑛
(1 −

𝑛

𝑁
) 

As the measurement units for the estimated variance are squared, researchers typically report the 
square root of the estimated variance, or the standard error, for ease of interpretation:  

𝑆𝐸(�̅�) = √
𝑠2

𝑛
(1 −

𝑛

𝑁
) 

The standard error for an estimate will have the same units as the original measurements.   

With visitation studies, we are often more interested in estimating the population total (Y) than the 
population mean (�̅�) .  For example, we might draw a simple random sample of days in April, count total 
visitors on each selected day, then extrapolate from the sampled days to estimate the total number of 
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Exhibit 1.2: Variance of Sample Mean versus Sample Size

Note: assumes S2 = 1 and N = 10,000   
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April visitors.  Under simple random sampling, �̂� = 𝑁�̅�   is an unbiased estimate of Y.  The estimated 

standard error of �̂� is given by 

𝑆𝐸(�̂�) = 𝑁√
𝑠2

𝑛
(1 −

𝑛

𝑁
) 

 

Although the standard error is useful and is typically reported with an estimate, non-technical readers 
will have difficulty interpreting standard errors.  As a result, researchers often report confidence 
intervals for their estimates.  A confidence interval provides a range within which the researcher 
expects the true value to lie.  Recall that due to sampling error, the reported estimate is almost always 
not equal to the population parameter; that is, the estimate is almost always incorrect when interpreted 
literally.  For example, when we use a general population survey to estimate that the average American 
has visited 4.8 national parks within the last ten years, this number is likely to be wrong.  The true 
number may instead be 4.1 or 5.3.   Confidence intervals circumvent this problem by presenting the 
estimate as a range rather than a single value.  For example, one might present a range of 3.8 – 5.8 trips 
rather than using the point estimate of 4.8 trips. 

Suppose we wish to estimate the value of a particular population parameter, 𝜃, and let  𝜃  represent our 
estimate of that parameter.  An X% confidence interval for 𝜃 is an interval which, if calculated for 
repeated samples, would be expected to include the true parameter X% of the time.  This definition, 
although correct, is rather convoluted. The vast majority of non-technical readers (and many technical 
readers) will have a different interpretation:  they will assume that there is an X% chance that the true 
parameter lies within the X% confidence interval.  Although there is a subtle difference between these 
two interpretations, it is likely harmless for most readers to ignore it.  Interested readers can consult 
Lohr (1999, pp. 35-36).  

The X% confidence interval for 𝜃 is calculated as  

[𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑, 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑] = [ 𝜃 − 𝑧𝑆𝐸(𝜃),    𝜃 + 𝑧𝑆𝐸(𝜃)] 

The factor z is used to scale the size of the interval based on the level of confidence desired:  for a 99% 
confidence interval, z = 2.58, for a 95% confidence interval, z = 1.96, and for a 90% confidence interval, z 
= 1.65.  A 95% confidence interval is fairly typical.  These confidence interval calculations rely on a 
normal approximation that is likely to be reasonable if the sample size is large and the population itself 
is not unusually skewed.  For small sample sizes and skewed populations, the researcher should consider 
consulting a statistician or applying model-based methods to establish confidence intervals.7         

Under simple random sampling, the 95% confidence interval for �̅� is given by 

⌊�̅� − 1.96 ∗ 𝑆𝐸(�̅�), �̅� + 1.96 ∗ 𝑆𝐸(�̅�) ⌋ 

or  

                                                           
7 Often survey researchers present a “margin of error” rather than a standard error or confidence interval.  The 
margin of error is typically equal to the half-width of a 95% confidence interval.  For example, an estimate 
presented as “83%, +/-2%” would be equivalent to a 95% confidence interval of [81%, 85%].  
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⌊�̅� − 1.96√
𝑠2

𝑛
(1 −

𝑛

𝑁
) , �̅� + 1.96√

𝑠2

𝑛
(1 −

𝑛

𝑁
) ⌋ 

 

 
 
 
 

Example 1.3: Simple Random Sampling 

Suppose we would like to estimate the total number of visitors launching boats from a small launch site 
at Lake Roosevelt National Recreation Area during the summer months (June, July, and August).  There 
are 92 days in the three-month period.  We draw a simple random sample of 15 days, and we count 
visitors launching boats on all 15 days.  The number of visitors observed launching boats on the sampled 
days is as follows:   

Day No. Visitors 

1 5 
2 11 
3 8 
4 7 
5 10 
6 4 
7 5 
8 8 
9 12 

10 13 
11 14 

Simple Random Sampling: Summary of Estimators 

 
Estimator Standard Error 

Mean 
�̅� =

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
 

 
𝑆𝐸(�̅�) = √

𝑠2

𝑛
(1 −

𝑛

𝑁
) 

where:  

𝑠2 =
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
 

 
 

Total �̂� = 𝑁�̅� 𝑆𝐸(�̂�) = 𝑁 𝑥 𝑆𝐸(�̅�) 
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Day No. Visitors 

12 12 
13 3 
14 7 
15 6 

 

The sample average is �̅� =
125

15
= 8.33, and the sample variance is 𝑠2 =

169.3

15−1
 = 12.1.   As a result, the 

total estimated visitors is �̂� =  𝑁�̅� = 92 ∗ 8.33 = 766.4  with standard error equal to 

𝑆𝐸(�̂�) = 𝑁√
𝑠2

𝑛
(1 −

𝑛

𝑁
) 

                  = 92√
12.1

15
(1 −

15

92
) 

                 = 75.6 

Assuming normality, a 95% confidence interval can be calculated as: 

⌊�̂� − 1.96 ∗ 𝑆𝐸(�̂�), �̂� + 1.96 ∗ 𝑆𝐸(�̂�) ⌋ 

or      
⌊766.4 − 1.96 ∗ 75.6, 766.4 + 1.96 ∗ 75.6 ⌋ 

or  

⌊618,   915 ⌋ 

Thus, we estimate that 766 visitors launched boats during the summer months, with a 95% confidence 
interval of [618, 915].  A more precise estimate (with a narrower confidence interval) could have been 
obtained by conducting visitor counts on a larger number of days.   
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STRATIFIED RANDOM SAMPLING  

While simple random sampling has tremendous intuitive appeal, in some situations it simply does not 
make sense.  For example, suppose we were interested in estimating annual visitation at North Beach, 
which is within Padre Island National Seashore, using comprehensive on-site visitor counts at all 
entrances to the beach.  Because these on-site counts are expensive, we can’t count every single day, 
but our budget is sufficient to conduct visitor counts on a sample of 60 days.   Under this scenario, it is 
difficult to imagine why it would ever make sense to use simple random sampling to select a sample of 
days.  A simple random sample might yield 35 winter days, 12 spring days, 6 summer days, and 7 fall 
days.  Or it might yield 0 winter days, 0 spring days, 60 summer days, and 0 fall days.  These types of 
undesirable samples can be avoided by dividing the year into seasons, then drawing a simple random 
sample of days from each season.   

This type of sampling, where we divide the entire population into mutually exclusive groups, then draw 
a simple random sample from each group, is called stratified random sampling (Exhibit 1.3).  The groups 
are referred to as “strata.”  The term “strata” has the same origin as the geological term that describes 
layers of sedimentary rock.  Within each stratum, the rock types are similar.  Across strata, they differ.  

 

Similarly, the days in the above example are assumed to be relatively similar within a season, but to 
differ across seasons.  In stratified random sampling, the sample within each stratum is used to 
characterize that stratum (e.g., average visitation for a season), then the strata results are combined to 
characterize the overall population (e.g., average visitation for the entire year).8 

 

 

 

 

 

 

                                                           
8 As a concept, stratified random sampling has been around for millennia.  Plutarch (Life of Antony, c. 39) describes 
Antony’s application of stratified random sampling in punishing Roman soldiers after a defeat:  “Antony was 
furious and employed the punishment known as 'decimation' on those who had lost their nerve. What he did was 
divide the whole lot of them into groups of ten, and then he killed one from each group, who was chosen by lot.” 

Sedimentary layers, or “strata” 
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Exhibit 1.3: Stratified Random Sample of Households Living Near a Park   

 Households are grouped by neighborhoods, which are the strata, and a simple random sample  

 of households is selected from each neighborhood. 

 

  

Stratified random sampling can only be implemented if (1) the entire population can be divided into 
mutually exclusive strata and (2) the total number of units in the population that belong to each stratum 
is known.  If these conditions hold, then stratified random sampling can be extremely useful:        

 Improved Precision:   If the strata are relatively homogeneous with respect to the 
characteristics we are measuring, stratified random sampling will typically produce estimates 
with lower standard errors than simple random sampling.  The improvement in precision is 
largest when the differences among units within each stratum are small and the differences 
across strata are large.9  For example, stratified sampling would likely improve precision in 
estimating the average height of students in an elementary school, as height differences 
within grades are likely to be small relative to height differences across grades.  

 Stratum-Specific Estimates:  In many cases, we would like to have estimates for subsets of 
the population in addition to an overall estimate.  Stratified random sampling can guarantee 
that these stratum-specific estimates will be available.  For example, in addition to the total 
number of annual trips to North Beach, we might be interested in estimating trips by season.  
When conducting an on-site count study on randomly selected days, stratifying by season 

                                                           
9 Note that in the extreme case, where all units are identical within strata, a stratified random sample could 
determine the population mean exactly by drawing only one unit from each stratum.    

Strata 
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can guarantee that we will be able to estimate seasonal totals (by guaranteeing that we will 
select at least one day from each season), while simple random sampling cannot.     

 Lower Administrative Costs:  There are many situations where stratification simplifies the 
administration of a study, thus potentially lowering costs.   For example, suppose that we 
need to randomly select trailheads along the Appalachian Trail for a season-long count study 
designed to estimate the number of day hikers using the trail.  It would be inefficient to draw 
a simple random sample of trailheads, as the selected trailheads on any given day could be 
anywhere along the 2,168-mile trail.  Unusual samples could lead to extremely high travel 
costs for field personnel.  It would be preferable to divide the trail into sections and sample 
trailheads within each section.  Under this design, field staff could be hired to cover only the 
section of the trail that is closest to their home.   

The reason stratified random sampling can improve precision is because we are adding information to 
the sampling problem, just as increasing the sample size adds information.  Rather than approaching the 
problem with absolutely no knowledge of the population (other than its total size), we are exploiting 
knowledge about how the population should be organized before we begin sampling.  It is this extra 
information that allows us to develop estimates that are more precise than under simple random 
sampling.   

The mathematical notation used to describe stratified random sampling is a bit cumbersome, but easily 
understood with sufficient attention to detail.  The key is to remember that we are simply applying 
simple random sampling to individual strata, then combining the stratum-specific results to obtain 
estimates for the population.  When we combine results from individual strata, we need to take the size 
of each stratum into account.  For example, in combining average daily visits by month to estimate 
average daily visits for the year, we would need to account for the fact that August has 31 days while 
February only has 28. 

Let h be a stratum-specific subscript so that 𝑛ℎ represents the sample size in stratum h, 𝑁ℎ represents 

the population size for stratum h, �̅�ℎ represents the sample mean for stratum h, and 𝑠ℎ
2 represents the 

sample variance for stratum h.  Also, let H represent the total number of strata and let N represent the 

overall population size, or  𝑁 = ∑ 𝑁ℎ
𝐻
ℎ=1 .   

Using this notation, an unbiased estimate of the population mean is given by 

�̅�𝑠𝑡𝑟 = ∑
𝑁ℎ

𝑁

𝐻

ℎ=1

�̅�ℎ , 

with the estimated standard error given by 

𝑆𝐸(�̅�𝑠𝑡𝑟) = √∑ (1 −
𝑛ℎ

𝑁ℎ
) (

𝑁ℎ

𝑁
)

2 𝑠ℎ
2

𝑛ℎ

𝐻

ℎ=1

. 

Note that  
𝑁ℎ

𝑁
 is the fraction of the population that is within stratum h, so �̅�𝑠𝑡𝑟 is really just a weighted 

average of the stratum-specific sample means, where the weight for each stratum is the proportion of 
the overall population that it represents.  This makes intuitive sense.  For example, suppose we 
conducted a phone survey of New England residents to estimate the average number of lifetime trips 
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taken to Acadia National Park.  If we stratified by state and completed 100 interviews in each state, we 
would want to weight the state means by the relative population of each state when calculating the 
overall average for New England.  Massachusetts, which has a population of 6.6 million, would have a 
weight that is approximately 11 times larger than Vermont, which has a population of 0.6 million.     

It is also important to note that the sample variance (𝑠2) is undefined with a sample size of one.  As a 
result, if a standard error for the population estimate is desired (and it usually is), it is important to 
ensure that at least two units from each stratum are sampled.   

An unbiased estimate of the population total under stratified random sampling is 

�̂�𝑠𝑡𝑟 = ∑ 𝑁ℎ

𝐻

ℎ=1

�̅�ℎ , 

with estimated standard error given by 

𝑆𝐸(�̂�𝑠𝑡𝑟) = √∑ (1 −
𝑛ℎ

𝑁ℎ
) 𝑁ℎ

2
𝑠ℎ

2

𝑛ℎ

𝐻

ℎ=1

. 

 

If the sample sizes within each statum are large (i.e., > 30), then an approximate confidence interval is  

�̅�𝑠𝑡𝑟 ± 𝑧𝑆𝐸(�̅�𝑠𝑡𝑟), 

When sample sizes within strata are small, many survey researchers use a t distribution (rather than a z 
distribution) with n-H degrees of freedom (Lohr 1999, pg. 101).   Alternative approaches are discussed in 
Cochran (1977, pg. 96). 
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Example 1.4: Stratified Random Sampling 

Suppose we need to estimate the number of fishing trips taken to Shenandoah National Park last year 
from four nearby counties.  Counties 1 and 2 border the park, while Counties 3 and 4 are nearby but do 
not border the park.  We obtain a list of licensed anglers, and we sort the list by county.  We find that 
County 1 has 7,000 licensed anglers, County 2 has 12,000, County 3 has 14,000, and County 4 has 8,000.  
Because anglers living closer to the park are more likely to fish there, we choose to sample 1 in 50 
anglers from counties 1 and 2, and 1 in 100 anglers from counties 3 and 4, leading to sample sizes of 
𝑛1 = 140, 𝑛2 = 240, 𝑛3 = 140, and  𝑛4 = 80.   

We draw a simple random sample of anglers from each of the four counties, phone each selected 
angler, and determine the number of fishing trips that he or she took to Shenandoah last year.10  The 
resulting sample means are as follows:  �̅�1 = 2.4,  �̅�2 = 3.8, �̅�3 = 0.7, and �̅�4 = 1.2, while the sample 

variances are 𝑠1
2 = 4.7,  𝑠2

2 = 9.7, 𝑠3
2 = 1.3, and  𝑠4

2 = 2.1.   

Total estimated fishing trips are calculated as: 

�̂�𝑠𝑡𝑟 = ∑ 𝑁ℎ

𝐻

ℎ=1

�̅�ℎ 

                                                                  = (7,000)(2.4) + (12,000)(3.8) + (14,000)(0.7) + (8,000)(1.2) 

                                                           
10 For simplicity, we assume 100% response and perfect recall. 

Stratified Random Sampling: Summary of Estimators 

 
Estimator Standard Error 

Mean 
�̅�𝑠𝑡𝑟 = ∑

𝑁ℎ

𝑁

𝐻

ℎ=1

�̅�ℎ 

where: 

�̅�ℎ= sample mean for stratum h 

Nh= total number of units in 
stratum h 

 
 

𝑆𝐸(�̅�𝑠𝑡𝑟) = √∑ (1 −
𝑛ℎ

𝑁ℎ
) (

𝑁ℎ

𝑁
)

2 𝑠ℎ
2

𝑛ℎ

𝐻

ℎ=1

 

 
where:  

𝑠ℎ
2= sample variance for stratum h 

nh = number of units sampled from stratum h  

Total �̂�𝑠𝑡𝑟 = 𝑁�̅�𝑠𝑡𝑟 𝑆𝐸(�̂�𝑠𝑡𝑟) = 𝑁 𝑥 𝑆𝐸(�̅�𝑠𝑡𝑟) 
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                                                     = 81,800 trips 

The calculation of the standard error for this total is illustrated in the following table: 

h 𝑛ℎ 𝑁ℎ 𝑠ℎ
2 

𝑛ℎ

𝑁ℎ
 𝑁ℎ

2 
𝑠ℎ

2

𝑛ℎ
 (1 −

𝑛ℎ

𝑁ℎ
) 𝑁ℎ

2
𝑠ℎ

2

𝑛ℎ
 

1 140 7,000 4.7 0.02 49,000,000 0.034 1,632,680 
2 240 12,000 9.7 0.02 144,000,000 0.040 5,644,800 
3 140 14,000 1.3 0.01 196,000,000 0.009 1,746,360 
4 80 8,000 2.1 0.01 64,000,000 0.026 1,647,360 

      Total: 10,671,200 
  

SE(�̂�𝑠𝑡𝑟) = √10,671,200 = 3,267 

 

Thus, the overall estimate of fishing trips to Shenandoah from the four counties is 81,800, with a 95% 
confidence interval of  

⌊�̂�𝑠𝑡𝑟 − 1.96 ∗ 𝑆𝐸(�̂�𝑠𝑡𝑟), �̂�𝑠𝑡𝑟 + 1.96 ∗ 𝑆𝐸(�̂�𝑠𝑡𝑟) ⌋ 

or  

⌊75,397,   88,203⌋ 

 
 

While stratified random sampling can be useful, it does come at a cost.  First, the analysis methods are 
more complex than under simple random sampling, thus increasing the possibility of error and 
misinterpretation.  For example, if another researcher inherits a survey dataset for analysis, that person 
will often default to assuming that the data were gathered using simple random sampling, thus leading 
to potentially biased estimates and/or incorrect standard errors.   

Second, stratified random sampling requires more thought prior to drawing the sample.  Specifically, the 
researcher must decide (1) how to define the strata and (2) how to allocate the sample across strata.    

 

Defining Strata 

Defining strata involves two separate decisions: (1) deciding on the total number of strata (H) and (2) 
deciding how to subdivide the population into these H groups.  Unfortunately, there is no step-by-step 
process for making these decisions that will apply in all sampling contexts.11  However, there are a few 
general guidelines to keep in mind. 

                                                           
11 Cochran (1977, pp. 127-134) provides additional technical detail and discussion of research results related to 
these topics, but there are few general conclusions that can be drawn.  If the consequences of incorrectly 
specifying the strata could potentially be severe (e.g., situations where data collection costs are extremely high), 
we recommend working with a sampling statistician to maximize the efficiency of the sampling.    
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1. When an estimate is required for a specific sub-population, that sub-population must be an 
individual stratum.  For example, in a survey of U.S. residents designed to estimate national 
park visitation by state, one would want to stratify by state to ensure that each state has a 
sufficient number of respondents.   

2. Differences between strata should be as large as possible and differences within strata should 
be as small as possible.  Stratification provides the most improvement in precision when there 
are large differences between the strata, but variability within the strata is relatively small.  For 
example, in selecting days for an on-site visitor count study, one may want to consider 
stratifying by season if the variation in daily visitation across seasons is large relative to the 
within-season variation.12   

3. When faced with two possible choices for stratification, it is often preferable to select the 
design that is simpler and more intuitive.  For example, having fewer strata is often preferable, 
with between two and five being sufficient in many contexts.  Simple stratification schemes 
reduce the possibility of error during implementation and analysis, and they frequently lead to 
greater acceptance of the study results by decision-makers.  If decision-makers can’t understand 
how a complex sample was drawn, there is a greater likelihood that they will view the results – 
however sound they may be – with skepticism.            

Despite the absence of clear guidance with respect to defining strata, one should be reassured by the 
fact that while some stratification schemes will provide more precision than others, there is no 
stratification that would be considered indisputably “wrong.”   Regardless of the stratification, one can 
always develop unbiased estimates of population parameters and calculate standard errors under 
stratified random sampling.     

 

Allocating the Sample Across Strata 

The simplest approach to allocating the total sample across individual strata is to use proportional 
allocation, which involves allocating the sample in direct proportion to stratum size.13  Under 
proportional allocation, the sample size for stratum h is given by: 

𝑛ℎ = (
𝑁ℎ

𝑁
) 𝑛 

With a general population survey of U.S. residents stratified by state, a sample size of 1,000 would 
involve sampling 121 California residents under proportional allocation, because 12.1% of U.S. residents 
live in California: 

121 = (
38 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

314 𝑚𝑖𝑙𝑙𝑖𝑜𝑛
) 1,000 

Proportional allocation is often the best approach for allocating the sample across strata when there is 
little information about the potential variance of y within strata and when the cost of sampling is 
relatively constant across strata.  The beauty of proportional allocation is that the sample mean is equal 

                                                           
12 In these types of studies, it is also common to stratify by type of day (e.g., weekend versus weekday).   
13 This is analogous to the proportional representation that exists in the U.S. House of Representatives, where the 
sample size (or delegation) from each state is proportional to the state’s population.  
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to the stratified mean, or �̅�𝑠𝑡𝑟.  That is, completely ignoring the stratification and calculating the sample 
mean in the standard way (by summing the values of y and dividing by n) provides the same result as 
calculating the stratified mean using the formula above.  This simplifies interpretation and analysis, and 
it reduces the likelihood that subsequent researchers inheriting the dataset will misinterpret the data. 

When the variance of y is expected to be larger in some strata than in others, then the sampling will be 
more efficient if a larger share of the overall sample is allocated to the high-variance strata.  High-
variance strata are somewhat like the problem children in a large family: they demand more of our 
attention because their behavior is unpredictable.  Suppose, for example, we were selecting days for a 
summer/fall count study at a beach in northern California.  In the summer, the weather is relatively cool, 
foggy, and predictable.  In the fall, it is generally somewhat cool but occasionally there are spectacular 
beach days.  Under this scenario, we would want to allocate more sampling days to the fall than to 
summer, as visitation in the fall would have greater variability.14   

When the cost of sampling is constant across strata, the most efficient allocation approach is Neyman 
allocation (Neyman 1934).15  Under Neyman allocation, the sample size for stratum h is proportional to 
the size of the stratum (𝑁ℎ) times the stratum standard deviation (𝑆ℎ): 

𝑛ℎ = (
𝑁ℎ𝑆ℎ

∑ 𝑁ℎ𝑆ℎ
𝐻
ℎ=1

) 𝑛 

This makes sense intuitively: we allocate more of the sample to strata that (1) are difficult to 
characterize due to their variability and (2) have an outsized influence on the population mean/total 
because they constitute a large share of the overall population.   

The conundrum with Neyman allocation is that it requires information about stratum variances, yet we 
typically can’t estimate variances until the study is actually implemented.  As a result, the most efficient 
sampling approach can’t be established until after we’ve finished sampling!  While this may seem like a 
hopeless situation, it is sometimes possible to gain enough information about variances that would 
allow us to at least approximate Neyman allocation.  For example, preliminary information about 
variances might be obtained from a small-scale pilot effort conducted prior to the main study (e.g., the 
first phase of a multi-phased study), a similar study conducted at a nearby location, or from a similar 
study conducted in a prior year.   

Given the scarcity of information that can be used to approximate variances, we have often defaulted to 
a simpler approach.  Specifically, we begin with proportional allocation, then adjust these initial sample 
sizes to allocate more of the sample to strata where we expect higher variances.  Typically, strata that 
have larger y values (e.g.., weekends/holidays in studies designed to obtain daily counts), will have 
larger variances, so we oversample these strata.  While perhaps not perfectly efficient, it is important to 

                                                           
14 Note that this assumes that the overall goal is to minimize the variance of the annual trip estimate.  However, 
due to consistently high visitation in the summer, it is possible that obtaining a highly accurate summer-specific 
estimate may be more important for policy (or NRDA) purposes, which would lead one to allocate a greater share 
of the sample to the summer stratum.     
15 When the cost of sampling differs across strata, the sampling approach can be further modified to take stratum-
specific costs into account.  The most efficient approach is called “optimal allocation” and involves allocating the 

sample in proportion to 
𝑁ℎ𝑆ℎ

√𝑐ℎ
, where 𝑐ℎ is the unit cost of an observation in stratum h.   
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keep in mind that our estimates will be unbiased regardless of the allocation of the sample across strata; 
it’s just that a more efficient allocation will produce smaller standard errors.     
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Cluster Sampling 

Suppose we were planning to conduct an in-person survey of Washington D.C. households to estimate 
annual visits to the National Mall.  A random sample of households in the city would likely be very costly 
for conducting interviews, as selected households would potentially be widely dispersed throughout the 
city.  It would be time consuming for interviewers to travel to all of the selected households.  An 
alternative would be to group households into clusters based on location (e.g., neighborhoods or 
blocks), randomly select a subset of these clusters, then randomly select households within each cluster 
(Exhibit 1.4).  This approach would result in sampled households that are closer together, thus reducing 
travel costs for interviewers. 

 

Exhibit 1.4: Two-Stage Cluster Sample of Households Living Near a Park   

 Households are grouped by neighborhood, then a simple random sample of three  

 neighborhoods are selected.  Within each of the selected neighborhoods, 

 a simple random sample of households is selected. 

 

 

 

Clusters 
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Consider another example where the sampling unit is a recreational trip rather than a household.  
Suppose we would like to estimate mean trip length at a park by randomly selecting survey days, then 
interviewing a sample of visitors leaving the park on the selected days.  In this example, trips are 
naturally grouped in clusters:  each day is a cluster of trips.  Thus, our sampling approach involves 
randomly selecting clusters, then selecting a subset of trips within each selected cluster. 

These examples describe two-stage cluster sampling (Exhibit 1.5).  The first stage involves selecting one 
or more clusters, or groups, of sampling units.  The second stage involves selecting sampling units within 
each selected cluster.16 Cluster sampling is similar to stratified random sampling in that both require 
that the entire population be divided into mutually exclusive groups prior to drawing the sample.  
However, with stratified sampling, sampling units are selected within every group.  With cluster 
sampling, on the other hand, some groups will have units selected while others will not.  Thus, cluster 
sampling concentrates (or “clusters”) the sample within a subset of the groups. 

Exhibit 1.5: Two-Stage Cluster Sampling 

      

       Stage 1: 

 

 

       Stage 2: 

 

 

Cluster sampling typically provides less precision than simple random sampling or stratified random 
sampling when the sample size is held constant.  This is due to the fact that units within a cluster are 
often similar to one another.  As a result, concentrating the sample within a small number of clusters 
provides less information about the research problem:  an additional unit from a cluster provides little 
new information if it is similar to all of the other units in that cluster.  Consider, for example, the 
problem of estimating average household income within a metropolitan area by drawing a sample of 
households and conducting a survey.  As households living within the same neighborhood tend to be 
broadly similar with regard to socioeconomic status, spreading the sample across many different 
neighborhoods (through simple random sampling or stratified random sampling) would clearly provide 
more information than concentrating the sample within only a few neighborhoods (through cluster 
sampling). 

Under cluster sampling, precision will be greatest when variability within clusters is large and variability 
across the clusters is small.17  In other words, when the units within the clusters don’t really seem to 

                                                           
16 Sampling texts typically present many more varieties of cluster sampling than are described here.  Specifically, 
these texts will describe cluster sampling where all units within each cluster (rather than just a subset of units) are 
sampled and examined.  They also describe situations where the clusters each have the same number of sampling 
units and situations where the total number of sampling units (N) is known.   
17 Note that the opposite is true with stratified random sampling, where it is preferable to have more variability 
across strata and less variability within strata.   

Randomly select 

clusters of units 

Randomly select  

units from each 

selected cluster 
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naturally belong together, precision will be higher.  Ideally, one would have clusters that are very 
diverse, so that each cluster can be thought of as a “mini population.”  In the extreme case, if there were 
no differences between clusters, then a cluster sample would be equivalent to a simple random sample, 
because the cluster membership of the sampled units would be irrelevant.  

In order to describe the relevant formulas for cluster sampling, some new notation will be required: 

 N = total number of clusters 

 n = number of randomly selected clusters 

 Mi = total number of sampling units within the ith sampled cluster 

 mi = number of randomly selected units within the ith sampled cluster 

 �̅�𝑖  = sample mean within the ith cluster  

 𝑠𝑖
2 = sample variance within the ith cluster 

 

The population mean can then be estimated using a “ratio estimator": 

�̅�𝑐𝑙𝑢 =  
∑ 𝑀𝑖�̅�𝑖

𝑛
𝑖=1

∑ 𝑀𝑖
𝑛
𝑖=1

 

While this expression may look unusual at first, it is really just a weighted average of the sample means 
(�̅�𝑖) for the selected clusters, where the weights are the cluster sizes (𝑀𝑖).  This is consistent with 
intuition: larger clusters should have a greater impact on the population mean.  Note that if all of the 
clusters are the same size (i.e., 𝑀𝑖 is a constant) then �̅�𝑐𝑙𝑢 is simply the overall average of the sampled 
cluster means.  

The standard error of the population mean can be estimated by (Lohr 1999, pg. 148): 

𝑆𝐸(�̅�𝑐𝑙𝑢) =
1

�̅�
√[(1 −

𝑛

𝑁
)

𝑠𝑟
2

𝑛
+

1

𝑛𝑁
∑ 𝑀𝑖

2

𝑛

𝑖=1

(1 −
𝑚𝑖

𝑀𝑖
)

𝑠𝑖
2

𝑚𝑖
] 

where �̅� is the average size of the sampled clusters and 𝑠𝑟
2 is an estimate of the variation across 

clusters: 

𝑠𝑟
2 =

∑ (𝑀𝑖�̅�𝑖 − 𝑀𝑖�̅�𝑐𝑙𝑢)2𝑛
𝑖=1

𝑛 − 1
 

 
(1.2) 

Note that equation 1.2 is simply the average squared deviation of the cluster means from the population 
mean, where the deviations are weighted by cluster size.   

An unbiased estimator of the population total is given by: 

�̂�𝑐𝑙𝑢 =
𝑁

𝑛
∑ 𝑀𝑖𝑦�̅�

𝑛

𝑖=1

 

 

(1.3) 
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In equation 1.3, 𝑀𝑖�̅�𝑖 is just the size of cluster i  times the sample mean for cluster i, which is of course a 
natural estimate of the total for cluster i.  These estimated cluster totals are summed across all sampled 

clusters, and the result is scaled up to the population by multiplying by  
𝑁

𝑛
, or the inverse of the fraction 

of clusters in our sample.   

The standard error is estimated by (Lohr, 1999, pg. 147): 

𝑆𝐸(�̂�𝑐𝑙𝑢) = √𝑁2 (1 −
𝑛

𝑁
)

𝑠𝑌
2

𝑛
+

𝑁

𝑛
∑ (1 −

𝑚𝑖

𝑀𝑖
) 𝑀𝑖

2
𝑠𝑖

2

𝑚𝑖

𝑛

𝑖=1

 

where we define 𝑠𝑌
2 as: 

𝑠𝑌
2 =

∑ (𝑀𝑖�̅�𝑖 −
�̂�𝑐𝑙𝑢
𝑁 )

2
𝑛
𝑖=1

𝑛 − 1
. 

 

When designing a study involving two-stage cluster sampling, the analyst will often need to make 
difficult decisions about how to allocate the total sample across and within clusters.  For example, if the 
overall sample size is fixed due to budget constraints, do we select many clusters and only a few 
sampling units within each selected cluster?  Or do we select a few clusters but many sampling units 
within each selected cluster?  It turns out that when the number of clusters in the population (N) is 
large, the former approach is almost always preferable – to select many clusters and only a few 
sampling units within each selected cluster.  This is apparent when one examines the standard error 
formulas above: when N is large, the variation across clusters (𝑠𝑟

2) becomes much more important than 

the variation within clusters (𝑠𝑖
2). 
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Cluster Sampling: Summary of Estimators 

 
Estimator Standard Error 

Mean 
�̅�𝑐𝑙𝑢 =  

∑ 𝑀𝑖�̅�𝑖
𝑛
𝑖=1

∑ 𝑀𝑖
𝑛
𝑖=1

 

where: 

�̅�𝑖  = sample mean of the ith 
cluster 
𝑀𝑖= total number of units in 
the ith cluster 
n = number of randomly 
selected clusters 
 

𝑆𝐸(�̅�𝑐𝑙𝑢) =
1

�̅�
√[(1 −

𝑛

𝑁
)

𝑠𝑟
2

𝑛
+

1

𝑛𝑁
∑ 𝑀𝑖

2

𝑛

𝑖=1

(1 −
𝑚𝑖

𝑀𝑖

)
𝑠𝑖

2

𝑚𝑖

] 

where:  

�̅� = average number of units in the sampled clusters 
N = total number of clusters 
𝑚𝑖= number of units selected from the ith cluster 

𝑠𝑟
2 =

∑ (𝑀𝑖�̅�𝑖 − 𝑀𝑖�̅�𝑐𝑙𝑢)2𝑛
𝑖=1

𝑛 − 1
 

𝑠𝑖
2 = sample variance within the ith cluster 

Total 
�̂�𝑐𝑙𝑢 =

𝑁

𝑛
∑ 𝑀𝑖𝑦�̅�

𝑛

𝑖=1

 

 

𝑆𝐸(�̂�𝑐𝑙𝑢) = √𝑁2 (1 −
𝑛

𝑁
)

𝑠𝑌
2

𝑛
+

𝑁

𝑛
∑ (1 −

𝑚𝑖

𝑀𝑖

) 𝑀𝑖
2

𝑠𝑖
2

𝑚𝑖

𝑛

𝑖=1

 

where: 

𝑠𝑌
2 =

∑ (𝑀𝑖�̅�𝑖 −
�̂�𝑐𝑙𝑢
𝑁 )

2
𝑛
𝑖=1

𝑛 − 1
. 
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Example 1.5: Cluster Sampling 

Suppose we would like to estimate the average duration of a visit to Arches National Park in August.  We 
randomly select five days and we conduct exit interviews at the main entrance with every fifth visitor on 
the selected days.18 

We obtain the following data from the five days of sampling:  

Day 
 
 

i 

 
Number of 

Visitors 
Observed 

 
𝑀𝑖 

Number of 
Completed 
Interviews 

 
𝑚𝑖 

Sample Average 
Trip Length 

(hours) 
 

�̅�𝑖  

Sample 
Variance of 
Trip Length 

 

𝑠𝑖
2 

Intermediate Term 
in SE Calculation 

 

𝑀𝑖
2 (1 −

𝑚𝑖

𝑀𝑖
)

𝑠𝑖
2

𝑚𝑖
 

1 400 80 4.5 9.1 14,560 
2 600 120 3.2 8.7 20,880 
3 225 45 5.6 5.8 5,220 
4 1,600 320 2.3 6.9 44,160 
5 200 40 6.0 7.0 14,560 

 

The average visit duration is estimated as  

�̅�𝑐𝑙𝑢 =  
∑ 𝑀𝑖�̅�𝑖

𝑛
𝑖=1

∑ 𝑀𝑖
𝑛
𝑖=1

 

                                                                                   =
(400)(4.5)+(600)(3.2)+(225)(5.6)+(1,600)(2.3)+(200)(6.0)

(400+600+225+1600+200)
 

                                                                                      = 3.3 hours 

The between-cluster variance is estimated as: 

𝑠𝑟
2 =

∑ (𝑀𝑖�̅�𝑖 − 𝑀𝑖�̅�𝑐𝑙𝑢)2𝑛
𝑖=1

𝑛 − 1
 

=
(400(4.5 − 3.3) + 600(3.2 − 3.3) + 225(5.6 − 3.3) + 1,600(2.3 − 3.3) + 200(6.0 − 3.3))

4
 

              = 795,520 

Finally, the standard error of the estimated mean is calculated as: 

                                                           
18 Although this is a systematic sample of trips, we will treat it as a simple random sample in this example.   
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𝑆𝐸(�̅�𝑐𝑙𝑢) =
1

�̅�
√[(1 −

𝑛

𝑁
)

𝑠𝑟
2

𝑛
+

1

𝑛𝑁
∑ 𝑀𝑖

2

𝑛

𝑖=1

(1 −
𝑚𝑖

𝑀𝑖
)

𝑠𝑖
2

𝑚𝑖
] 

=
1

605
√[(1 −

5

31
)

795,520

5
+

1

5 ∗ 31
(14,560 + 20,880 + 5,220 + 44,160 + 14,560))] 

= 0.61 ℎ𝑜𝑢𝑟𝑠 

Thus, the estimated mean duration of a trip is 3.3 hours , with a 95% confidence interval (assuming 
normality) of  

⌊�̅�𝑐𝑙𝑢 − 1.96 ∗ 𝑆𝐸(�̅�𝑐𝑙𝑢), �̅�𝑐𝑙𝑢 + 1.96 ∗ 𝑆𝐸(�̅�𝑐𝑙𝑢) ⌋ 

or  

⌊2.1, 4.5⌋ 
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Systematic Sampling 

There are times when it can be extremely difficult to draw a simple random sample.  Suppose, for 
example, that we wanted to determine the average length of trips taken to the Statue of Liberty on a 
particular day.  We could assign every visitor a unique ID upon entering the park, then draw a simple 
random sample of these IDs at the end of the day.  But at the end of the day, all of the visitors would be 
gone, so it would be impossible to conduct any interviews!  Alternatively, we could collect phone 
numbers from visitors as they enter the park, randomly draw a simple random sample of these phone 
numbers at the end of the day, and call each selected visitor.  However, this would require stopping all 
visitors and requesting phone numbers (not just the sampled visitors), which is a burdensome task.  
Furthermore, many visitors would refuse to provide a phone number, provide an invalid number, or 
simply refuse to answer the phone when called. 

As an alternative, on-site intercept interviews are typically conducted using systematic sampling.  Under 
systematic sampling, a sampling interval (k) is selected, and every kth visitor leaving the facility or park 
is intercepted and interviewed.   This is equivalent to having a complete list of visits, sorting the list by 
departure time, then selecting every kth visit from the sorted list.  In order to ensure that every visitor 
has the same probability of selection, the starting point (between 1 and k) must be randomly selected.  
Continuing the example above, suppose we decided to interview every 4th visitor leaving the Statue of 
Liberty.  We randomly select a number between 1 and 4, and we end up selecting the number 3.  We 
would then sample visitor numbers 3, 7, 11, 15, etc: 

 

 

 

A second example is depicted in Exhibit 1.6, which shows a systematic random sample of houses near a 
park.  Here, the houses are ordered from left to right, then from top to bottom.  Every 5th house is 
selected, with the randomly selected starting point being house number two.  Note that one of the 
neighborhoods has none of its houses selected and another (on the lower right) has half of its houses 
selected. 

Systematic sampling offers several advantages over simple random sampling: 

 When it is difficult to convert the population to a computerized list, systematic sampling can 
be much simpler to implement than simple random sampling.  This is frequently the case 
when sampling is conducted in the field.  For example, consider the problem of sampling 
occupied campsites at a large campground.  While it would be possible to enter the site 
numbers associated with all occupied campsites into a spreadsheet, then draw a simple 
random sample, this process may be cumbersome for field personnel to implement.  It is 
much simpler to have field personnel walk through the campground in a pre-determined 
order (i.e., by campsite number), conducting interviews at every kth occupied campsite.   

 Systematic sampling can protect against the possibility of an unusual sample that would not 
be representative of the population.  In the campsite example, simple random sampling could 
potentially result in a sample of campsites that are all located in a single area of the 
campground.  For example, the entire sample could consist of campsites that are close to a 

      1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16   
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nearby lake, thus potentially leading to an overestimate of the total number of beach trips.   A 
systematic sample would spread the sample throughout the campground.   

Systematic sampling is actually a type of cluster sampling, but only one cluster is selected.  For example,   
suppose we are selecting a systematic random sample of individuals from the following list, using a 
sampling interval of three:   

 

It is easy to see that this really boils down to selecting one out of three possible clusters of individuals, 
depending on the randomly selected starting point: 

             Start = 1          Start = 2       Start = 3 

                                       

                                                                           
The primary disadvantage of systematic sampling is that the variability can be large if the underlying 
population exhibits a systematic pattern that coincides with the sampling interval.  For example, 
suppose a campground were set up so that every fourth site was an “extended stay” site, and we had a 
sampling interval of four.  In this case, our sample would contain either all extended stay sites (0.25 
probability) or none (0.75 probability).  Alternatively, suppose we were selecting a systematic sample of 
summer days for a count study.  If the sampling interval were seven, we would have only one type of 
day in our sample (e.g., all Mondays, all Tuesdays, etc.)!  It is important to be on the lookout for these 
types of patterns before choosing a systematic sampling approach.   

An additional disadvantage arises when using systematic sampling to conduct interviews with visitors 
leaving a park: we cannot specify a sample size in advance.  The final sample size can of course be 
approximated (after selecting a sampling interval) based on previous estimates of daily visitation, but 
visitation on the selected day may be much higher or lower than average.  Thus the ultimate sample size 
may be larger or smaller than desired.   

Systematic random samples are typically analyzed as if they were simple random samples.  That is, 
estimates are developed using the formulas presented previously for simple random sampling.  The 
standard errors for simple random sampling will be reasonably accurate if the population is in 
approximately random order prior to drawing the sample.  If the population is sorted by the variable of 
interest, then estimates based on systematic samples will often have lower standard errors than 
estimates based on simple random samples: systematic sampling forces the sampled units to be “spread 
out” across the potential values in the population, while simple random sampling does not.    Thus, 
applying the formula for simple random sampling will produce a standard error estimate that is 
conservative (i.e., too high).19    

 

 

                                                           
19 Unfortunately, it is not possible to calculate the correct, lower standard error.  With only one “cluster” being 
sampled, there simply is no way to estimate the between-cluster variance.     
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Exhibit 1.5: Systematic Random Sample of Households Living Near a Park   

Every 5th household is selected, proceeding from left to right, then from top to bottom.  The 

starting point was randomly selected to be the second household.     
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Ratio Estimation 

Stratified random sampling provided an approach to using information from outside the sample to 
obtain estimates with lower variance.  That is, even if we didn’t know the particular value (y) for non-
sampled units, we still knew to which stratum each of those units belonged.  This knowledge allowed us 
to exploit the relationship between stratum membership and the y values for the sampled units to 
obtain improved estimates of population parameters.   The key was that we knew about the stratum 
membership for both the sampled and the non-sampled units in the population.  

Suppose we had access to additional information about the non-sampled units.  Our intuition tells us 
that we might be able to exploit this information to further reduce the variance of our estimates.  For 
example, suppose we need to estimate summer visitation at a park that has a vehicle counter installed 
at the main entrance.  Through a field study, we obtain information about the number of visitors 
entering the park on a sample of days.   We can estimate summer visitation by multiplying the average 
number of visits on the sampled days (�̅�) by the total number of days (N), but intuition tells us that we 
could potentially do better by exploiting information from the vehicle counter. In Exhibit 1.7, daily visits 
are plotted on the vertical axis, while daily vehicle counts are plotted on the horizontal axis.  There is 
clearly a close relationship between visits and vehicles, and it appears that the vehicle counts could 
provide important supplemental information about visitation on the non-sampled days.     

Exhibit 1.7: Visitor and Vehicle Counts on Randomly Selected Days 

 

Ratio estimation takes advantage of this type of supplemental information.  Specifically, ratio 
estimation uses the relationship between the variable of interest (y) and an auxiliary variable (x) that is 
correlated with y in order to improve our estimates of population parameters.20  In the above example, y 

                                                           
20 In a well-known early example of ratio estimation, the French mathematician Pierre-Simon Laplace estimated 
the population of France in 1802 by calculating the ratio of total population to live births within a sample of 30 
parishes (Lohr 1999).  Data on live births for these 30 parishes (and for the entire country) were readily available 
through baptism registries.  The ratio from the 30 parishes was applied to the number of live births nationwide to 
estimate the population of the country.    
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would be daily visitation and x would be the daily vehicle count.  If we know the vehicle count for the 
entire population of days and, based on the sampled days, we have information about the relationship 
between these vehicle counts and visitation, then we can implement a ratio estimation approach.  Ratio 
estimation allows us to leverage information about the auxiliary variable when applying the sample 
information to the population.    

Ratio estimation is most useful under the following conditions: 

 When it is relatively inexpensive to obtain data on the auxiliary variable.  For example, obtaining 
daily vehicle counts using an automated car counter is much less expensive than obtaining 
visitor counts with on-site personnel.  It is important to note, however, that in order to 
implement ratio estimation data on the auxiliary variable must be available for the entire 
population (not just for the sample).    

 When there is a strong relationship between the auxiliary variable and the variable of interest.  
Ideally, the relationship would be linear, and the best-fit line would pass through the origin.  For 
example, the relationship between daily vehicle counts and daily visitors would likely be strong 
in parks where the vast majority of visitors enter in a vehicle.  The relationship would typically 
pass through the origin (at least approximately), because there would be no visitors on days 
when no vehicles enter the park. 

Letting X represent the population total for the auxiliary variable (e.g., number of vehicles) and letting r 
represent the ratio of the sample mean of y to the sample mean of x (this is the “ratio” in the term 
“ratio estimate”),21 

𝑟 =
�̅�

�̅�
 

the ratio estimate of the population mean is given by 

�̅�𝑟𝑎𝑡𝑖𝑜 = 𝑟
𝑋

𝑁
. 

Continuing the example from above, the ratio estimate is simply the persons per vehicle on the 

randomly sampled days (
�̅�

�̅�
) times the average number of vehicles per day throughout the entire three-

month period. 

The standard error of  �̅�𝑟𝑎𝑡𝑖𝑜 is approximated by 

𝑆𝐸(�̅�𝑟𝑎𝑡𝑖𝑜) = √(
𝑁 − 𝑛

𝑁
)

𝑠𝑟𝑎𝑡𝑖𝑜
2

𝑛
 

where  

                                                           
21 If the relationship between x and y can be summarized by a straight line that passes through the origin and if the 
variance of 𝑦𝑖  about this line is proportional to 𝑥𝑖, then this estimate of the ratio (r) is equivalent to the estimated 
slope in a weighted least squares regression, with weights equal to the inverse of 𝑥𝑖  (Lohr, 1999, pg. 71). 
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𝑠𝑟𝑎𝑡𝑖𝑜
2 =

∑ (𝑦𝑖 − 𝑟𝑥𝑖)2𝑛
𝑖=1

𝑛 − 1
 

Note that the equation for 𝑠𝑟𝑎𝑡𝑖𝑜
2  is analogous to the equation for 𝑠2, the sample variance under simple 

random sampling.  Both expressions calculate an average squared deviation from a predicted value.  But 
under simple random sampling the predicted value is the sample mean (�̅�), while under ratio 
estimation, the predicted value is 𝑟𝑥𝑖.22   

The ratio estimate of the population total is  

�̂�𝑟𝑎𝑡𝑖𝑜 = 𝑟𝑋 

with standard error approximated by: 

𝑆𝐸(�̂�𝑟𝑎𝑡𝑖𝑜) = √𝑁(𝑁 − 𝑛)
𝑠𝑟𝑎𝑡𝑖𝑜

2

𝑛
. 

 
Ratio estimates are biased, but the reduced standard errors typically compensates for the bias (Lohr, 
1999, pg 66).  The bias declines as the sample size increases, the sampling fraction increases, the 
variance of x decreases, and the correlation between x and y approaches one.  Lohr (pp. 66-70)  and 
Cochran (1977, pp. 160-162) provide additional discussion of bias in ratio estimation.  

                                                           
22 In addition, as noted by Cochran (1977, pg. 155), 𝑠𝑟𝑎𝑡𝑖𝑜

2  is actually a biased estimate of the variance of y about 
the best-fit line, but the bias is of order 1/n and can therefore be safely ignored in large samples.  
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Ratio Estimation: Summary of Estimators 

 
Estimator Standard Error 

Mean 
�̅�𝑟𝑎𝑡𝑖𝑜 = 𝑟

𝑋

𝑁
 

 

where: 

r = ratio of sample mean for 
variable of interest (�̅�) to sample 
mean for the auxiliary variable (�̅�) 

X = population total for the 
auxiliary variable 

 
 

𝑆𝐸(�̅�𝑟𝑎𝑡𝑖𝑜) = √(
𝑁 − 𝑛

𝑁
)

𝑠𝑟𝑎𝑡𝑖𝑜
2

𝑛
 

 
where:  

𝑠𝑟𝑎𝑡𝑖𝑜
2 =

∑ (𝑦𝑖 − 𝑟𝑥𝑖)2𝑛
𝑖=1

𝑛 − 1
 

 

Total 
�̂�𝑟𝑎𝑡𝑖𝑜 = 𝑟𝑋 

 𝑆𝐸(�̂�𝑟𝑎𝑡𝑖𝑜) = √𝑁(𝑁 − 𝑛)
𝑠𝑟𝑎𝑡𝑖𝑜

2

𝑛
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Example 1.6: Ratio Estimation 

We would like to estimate summer (June/July/August) visitation at a park that has a vehicle counter 
installed at the main entrance.  We count visitors on 15 randomly selected days and obtain the following 
data: 

 
 
 
i 

Visitor Count 
 
 

yi 

Vehicle 
Count 

 
xi 

Overall 
Visitor/Vehicle 

Ratio 

𝑟 =
�̅�

�̅�⁄  

Predicted Visitors 
 
 

𝑟𝑥𝑖  

Squared 
Deviation from 

Predicted 
Visitors 

(𝑦𝑖 − 𝑟𝑥𝑖)2 

1 300 550 0.67 367 4,489 
2 650 875 0.67 583 4,489 
3 1040 1620 0.67 1,080 1,600 
4 700 990 0.67 660 1,600 
5 300 610 0.67 407 11,449 
6 1550 2165 0.67 1,443 11,449 
7 1150 2025 0.67 1,350 40,000 
8 620 630 0.67 420 40,000 
9 800 1400 0.67 933 17,689 
10 350 325 0.67 217 17,689 
11 1300 2000 0.67 1,333 1,089 
12 225 288 0.67 192 1,089 
13 935 1442 0.67 961 676 
14 810 1255 0.67 837 729 
15 1270 1825 0.67 1,217 2,809 

 12,000 18,000   156,846 

We are told that throughout the entire three-month period, the total vehicle count was 115,000.  Thus, 
the ratio estimate of total visitation is given by 

�̂�𝑟𝑎𝑡𝑖𝑜 = 𝑟𝑋 

                                         = 0.67(115,000) 

                                    = 77,050 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 

 The ratio variance is estimated as:  

𝑠𝑟𝑎𝑡𝑖𝑜
2 =

∑ (𝑦𝑖 − 𝑟𝑥𝑖)2𝑛
𝑖=1

𝑛 − 1
 

                 =
156,846

15−1
 

= 11,203 

So that the standard error of the ratio estimate of total visitation can be calculated as 
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𝑆𝐸(�̂�𝑟𝑎𝑡𝑖𝑜) = √𝑁(𝑁 − 𝑛)
𝑠𝑟𝑎𝑡𝑖𝑜

2

𝑛
 

                                                                                     = √92(92 − 15)
11,203

15
 

= 2,300 

Note that we could also ignore the vehicle count data and simply apply the simple random sampling 
formulas to estimate Y.  If we do this, we obtain an estimate of 72,800 visitors, which is fairly close to 
the ratio estimate of 77,050 vistors.  However, the standard error calculated using simple random 
sampling formulas is 8,856, which is much larger than the standard error of the ratio estimate, or 2,300.  
This shows that the ratio estimate is performing as expected: it is allowing us to improve the precision of 
our estimate by incorporating information from supplemental data on vehicle counts.    
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Sampling Weights 

When any of the above sampling methods are applied, survey practitioners often develop sampling 
“weights” in order to simplify statistical analyses.  The sampling weight for unit i, 𝑤𝑖,  is simply the 
inverse of the probability that the unit was selected into the sample: it indicates the number of units in 
the population that the observation “represents.”  Letting  𝑝𝑖  represent the selection probability for unit 
i, the sampling weight is given by: 

𝑤𝑖 =
1

𝑝𝑖
 

The sum of the sampling weights in a dataset equals the overall population size: 

∑ 𝑤𝑖 = 𝑁

𝑛

𝑖=1

 

Suppose, for example, that we use simple random sampling to select 5 out of 100 possible visitors for a 
survey.  The selection probability for any individual visitor is 5/100 = 0.05, and the inverse of the 
selection probability is 20 = 1/(0.05).  Thus, each of the 5 visitors selected into our sample would be 
assigned a weight of 20, and the sum of the weights across the 5 visitors in our sample would be 
20+20+20+20+20 = 100, or the population size. 

While simple random sampling is helpful in illustrating the construction of weights, the true usefulness 
of survey weights comes into play when selection probabilities are not equal.  Consider the application 
of weights under stratified random sampling.  Suppose there are two neighborhoods near a park: 
Neighborhood A has 200 residents and Neighborhood B has 400 residents.  Neighborhood A is closer to 
the park than Neighborhood B, and we therefore choose to oversample Neighborhood A when 
conducting a survey to estimate annual trips.  We select 8 residents from Neighborhood A and 4 
residents from Neighborhood B and obtain the following results:23  

Neighborhood Person No. Trips 

A 1 4 
 2 9 
 3 3 
 4 2 
 5 10 
 6 1 
 7 0 
 8 8 

B 1 3 
 2 2 
 3 5 
 4 0 

 

                                                           
23 Clearly, any real survey would have a sample size larger than 12, but a small sample is used here for 
convenience.   
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Using the traditional stratified random sampling formula, we would estimate total trips as  

�̂�𝑠𝑡𝑟 = ∑ 𝑁ℎ

𝐻

ℎ=1

�̅�ℎ = 200 𝑥 
(4 + 9 + 3 + 2 + 10 + 1 + 0 + 8)

8
+   400 𝑥 

(3 + 2 + 5 + 0)

4
 

But note that we could also estimate total trips using sampling weights.  The sampling weight for any 
resident of Neighborhood A is 25 = (8/200)−1 and the sampling weight for any resident of 
Neighborhood B is 100 = (4/400)−1.  After calculating these weights, total trips can be estimated by 
multiplying trips by the sampling weight for each individual, then summing the result across all sampled 
individuals: 

�̂� =  ∑ 𝑤𝑖𝑦𝑖

𝑛

𝑖=1

= 25(4 + 9 + 3 + 2 + 10 + 1 + 0 + 8) + 100(3 + 2 + 5 + 0) 

Note that this provides the same result as the stratified random sampling formula.   

With sampling weights, one can easily see why oversampling specific strata does not lead to biased 
estimates of trips.  When certain types of units are sampled at higher rates, they are also assigned lower 
weights and therefore have less influence on the final estimates.  In the above example, individuals in 
Neighborhood A were sampled at four times the rate of individuals in Neighborhood B.  As a result, the 
weights for individuals from Neighborhood B (100) are four times larger than the weights for individuals 
from Neighborhood A (25).  Thus, the sampling weights exactly compensated for the higher selection 
probabilities in Neighborhood A.  This type of compensation occurs within the standard formulas as 
well, but it is somewhat buried in the math and difficult to see as clearly.   
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CHAPTER 2 

 

 

ON-SITE COUNTS BY FIELD PERSONNEL 

 

 

While obtaining visitation estimates through on-site counts is fairly straightforward at parks that require 
all visitors to pay an entry fee and pass through a main entrance, it can be quite complicated at the 
many parks that deviate from this simplistic structure.  These parks will often require random sampling 
of time periods and/or count locations, with a corresponding increase in analytical complexity.  This 
chapter provides an overview of the types of methodologies available in these contexts.  The primary 
focus is on count efforts where data are gathered entirely by humans stationed in the field.  Study 
designs that supplement these data with information from various types of automated counters are 
discussed in Chapter 3, while off-site data collection approaches are discussed in Chapter 4.   

The chapter begins with an overview of the statistical sampling framework for on-site count studies, as 
an understanding of the sampling context is crucial to evaluating study design and data analysis options.  
Next, we discuss the random sampling of days, which is typically the first step in all on-site count 
studies, regardless of the design. We then describe a variety of potential designs for studies that directly 
count completed trips at site entrances.  The chapter concludes with a discussion of designs where 
visitation estimates are derived indirectly by estimating visitor hours through instantaneous counts, 
then dividing this visitor-hour estimate by the average length of a trip.   

 

OVERVIEW 

For the on-site count studies discussed in this chapter, it is assumed that the ultimate goal is to estimate 
the number of recreational trips to a site during a specific time period.  A recreational trip is defined as 
an occasion where an individual travels from an overnight location (e.g., a home or hotel) to spend time 
at a site for recreational purposes, then leaves the site and returns to the overnight location.  A 
recreational trip might last ten minutes or it might last ten days.  If the individual leaves the site briefly 
during the trip without returning to his or her overnight location (e.g., to get something from a vehicle 
or to have lunch at a nearby restaurant), we treat the individual as having taken only one trip to the site. 
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There are two basic approaches to estimating trips through an on-site count study (Exhibit 2.1).  The 
first, which we call departure counts, involves stationing field personnel at entrances and counting 
visitors as they leave the site.24  This approach is simple and intuitively appealing, as trips are counted 
directly.     If the number of entrances is small, field personnel can be stationed at all entrances on 
randomly selected days.  This approach is described under simple departure counts below.  In order to 
limit extremely long work days, it is sometimes more convenient to obtain departure counts for 
individual shifts (i.e., AM or PM shifts) rather than entire days.  A methodology that relies on these shift-
specific counts is described under departure counts with sampling of shifts.  Finally, when the number 
of entrances is large, trip estimates can be obtained by stationing field personnel at a sample of 
entrances.  This approach is described under departure counts with sampling of a single entrance and 
departure counts with sampling of multiple entrances.   

The second approach, which we call instantaneous counts, involves obtaining near-instantaneous 
counts of all visitors on site at a sample of times in order to estimate total “visitor-hours” at the site.  
The visitor-hour total is divided by the duration of an average visit to convert visitor-hours to visits.  
Instantaneous counts are frequently used at sites where entry to the site is diffuse, making departure 
counts difficult to implement.  This is often the case, for example, at long ocean beaches paralleled by 
boardwalks or sidewalks.25   

Regardless of the methodology used for on-site counts, the first step is to select a subset of days on 
which to implement the counts.  We describe common approaches to sampling days below.  We then 
discuss each of the on-site count methodologies described in Exhibit 2.1. 

 

  

                                                           
24 Although one can also count visitors as they enter the site, we focus on departure counts in this chapter as we 
find them to be preferable to entry counts in a variety of situations.  For example, if visitors will be interviewed (in 
addition to being counted), they will be able to provide more accurate information about trip activities and the 
length of the trip if the interview is conducted at the end of the trip. 
25 If the border of such a site can be partitioned into mutually exclusive segments that can be monitored by field 
personnel, it would still be possible to apply a methodology that involves directly counting visitors as they enter or 
leave the site. For example, a field observer could monitor a single segment of the border and count all visitors 
who cross that particular segment to leave the park. 



Chapter 2: On-Site Counts by Field Personnel 
 

42 
 

Exhibit 2.1: Overview of Methodologies for On-Site Count Studies   

Methodology Quantity Measured Sampled Unit Quantity Estimated 

Simple Departure Counts Completed trips on 
sampled days 

Days Trips 

Departure Counts with 
Sampling of Shifts 

Completed trips on 
sampled shifts 

Days, then shifts  Trips 

Departure Counts with 
Sampling of a Single 
Entrance 

Completed trips on 
sampled days at 
sampled entrances 

Days, then entrances  Trips 

Departure Counts with 
Sampling of Multiple 
Entrances 

Completed trips on 
sampled days at 
sampled entrances 

Days, then entrances  Trips 

Instantaneous Counts Persons on site at a 
given time 
 
Trip duration 

Days, then times  
 
 
Days, then completed 
trips 

Visitor-hours 
 
 
Mean trip duration  

 

 

 

 

SELECTING DAYS FOR ON-SITE COUNTS   

Typically, funding is insufficient to count visitors on every day of the time period of interest.  Instead, 
visitors are counted on a sample of days, and total visitation is estimated by extrapolating from this 
sample.   It is common to stratify by weekend/weekday and by month when drawing a sample of days 
for on-site counts (see an example in Exhibit 2.2).  The weekend/weekday distinction is important 
because at recreation sites, visitation on Saturdays and Sundays is typically much greater than visitation 
on weekdays.26  Recall that stratification provides precision gains when sampling units that are similar 
are grouped together.  Thus, placing all Saturdays and Sundays in one stratum and placing all weekdays 
in a second stratum will typically improve precision.  Furthermore, as we learned in Chapter 1, allocating 
a disproportionate share of the sample to high-variance strata provides precision gains.  The variance is 
typically higher for weekend days, so one would want to sample these days at a higher rate than 
weekdays. 

  

                                                           
26 Holidays such as Memorial Day, July 4th, and Labor Day are typically placed in the weekend stratum if visitation is 
expected to be high on these days.  There are some holidays (e.g., Christmas) where one might expect visitation at 
outdoor recreation sites to be low, and these can be placed in the weekday stratum at the discretion of the 
researcher. 
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Exhibit 2.2: Illustration of Stratification by Weekend/Weekday and Month 

 

 

Key:  Stratum 1: July weekends 

  Stratum 2: July weekdays 

  Stratum 3: August weekends 

  Stratum 4: August weekdays 

  

Stratifying by month provides several benefits.  First, stratifying by month allows one to generate 
separate estimates for each month, which are often requested by management and can be useful when 
comparing the results with other studies.  Second, stratifying by month can provide precision gains, as 
the days within a month are typically more similar to one another than to the days from other months.  
(These precision gains will of course be more pronounced in areas of the country with greater 
seasonality.)  Finally, stratifying by month can often provide benefits with regard to scheduling field 
personnel, as it is useful to spread work days evenly through time.     

 
Within each stratum, the default approach to selecting days is often simple random sampling.  
Systematic sampling is also feasible, and it can be very appealing from a staff scheduling perspective, as 
it allows one to spread field days over time in a predictable manner.  In addition, systematic sampling 
can help protect against the possibility of a “bad” sample, such as a simple random sample of five 
weekdays where every selected weekday is in the first week of the month.   
 
However, caution is warranted when drawing a systematic sample of days, as it can often lead to 
unanticipated patterns that compromise the representativeness of the sample.  Consider the problem of 
drawing a systematic sample of weekdays within the month of June where the 1st is a Monday.  If we 
select every fifth weekday, counts would always be conducted on the same day of the week (e.g.., every 
Monday), which would clearly be disastrous. If we select every sixth weekday, then the selected days 
would begin on a Monday and slowly step towards Friday as the month progresses (Exhibit 2.3).  This 
could lead to a biased visitation estimate if there were trends in visitation both within the week and 
within the month.  For example, visitation at the site may be higher towards the end of each week (e.g., 
Thursdays and Fridays) and also towards the end of the month (e.g., days are typically warmer in late 
June than in early June).  On the other hand, sampling every 2nd or every 3rd weekday does not lead to 
any obvious pattern that would cause bias. 

 
  

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 3 4 5 1 2

7 8 9 10 11 12 6 4 5 6 7 8 9 3

14 15 16 17 18 19 13 11 12 13 14 15 16 10

21 22 23 24 25 26 20 18 19 20 21 22 23 17

28 29 30 31 27 25 26 27 28 29 30 24

31

July August
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Exhibit 2.3:  Systematic Sampling with Potentially Undesirable Trend 
 

 
   
With minor modifications to simple random sampling, balanced samples of days can be guaranteed and 
unusual samples avoided.  Specifically, restrictions can be imposed during sampling that will ensure that 
the final sample includes a variety of days of the week and is spread throughout the month rather than 
bunched at the beginning or end.  For example, if we were selecting five weekdays in a four-week 
month, it seems desirable that (1) every day of the week (Monday, Tuesday, Wednesday, Thursday, and 
Friday) and (2) every one of the four weeks be represented among the sampled days.  In this case, a 
balanced sample could be achieved by drawing the days sequentially and, before each draw, imposing 
restrictions based on the set of days that have been drawn thus far.  Suppose our first draw is Thursday 
of week 2.  Our second draw would be from weeks 1, 3, and 4, and Thursdays would be excluded.  
Suppose the second draw is Monday of week 3.  Our third draw would then be from weeks 1 and 4 and 
Mondays and Thursdays would be excluded.  This process would continue until we achieve the desired 
number of days.  If we have exhausted one of the sampling dimensions (e.g., weeks or days of the 
week), then we would restore all available sampling options for that dimension.    
 
 
   

  

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

June
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SIMPLE DEPARTURE COUNTS  

After selecting a sample of days for an on-site count study, one must consider how to count visitors on 
the selected days.  Simple departure counts involves directly counting all recreational visitors leaving a 
site (Exhibit 2.4).  This is the on-site count methodology that most people think of when they consider 
the problem of counting visits to recreation areas.  It is simple to understand and implement, and it 
should therefore be the first approach considered when selecting a methodology for developing 
visitation estimates.  Simple departure counts can be implemented at sites with multiple entrances, 
provided there are sufficient field personnel to count departures at every entrance simultaneously.   

Exhibit 2.4: Simple Departure Counts at a Park with Two Entrances  

 

 
Simple departure counts provide what is essentially a census of recreational visits to the site on any 
given day.  As a result, if all days in the study period are selected for counts, no statistical inference is 
required:  when the daily counts are aggregated across all days, one has complete knowledge of 
recreational trips taken during that period.  There is no margin of error because no sampling occurred. 

 
Typically, one draws a stratified random sample of days for on-site counts, as we discussed in the 
previous section.    However, in the case of simple departure counts, that is the only sampling that 
occurs; no sampling occurs within each selected day.  One way to look at this is to imagine we are simply 
drawing from a hat that has one slip of paper for every day in our study period.  Each of these slips of 
paper has a single number written on it:  the total number of trips taken to the site on that particular 
day.  Thus, randomly selecting n days for on-site counts is similar to drawing n slips of paper from this 
imaginary hat.  When we stratify by month and weekend/weekday, we are essentially dividing these 
slips of paper among H separate hats, then drawing 𝑛ℎ slips of paper from each. 
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With no within-day sampling, the statistical analysis of simple departure count data is entirely 
dependent upon the approach used to sample days.  When we draw a stratified random sample of days, 

total trips (�̂�) are estimated by multiplying the mean daily count for each stratum (�̅�ℎ) by the total 
number of days in the stratum (𝑁ℎ), then aggregating across all strata: 

 

                �̂� = ∑ 𝑁ℎ

𝐻

ℎ=1

�̅�ℎ . 

The estimated standard error is given by 

𝑆𝐸(�̂� ) = √∑ (1 −
𝑛ℎ

𝑁ℎ
) 𝑁ℎ

2
𝑠ℎ

2

𝑛ℎ

𝐻

ℎ=1

, 

where 𝑛ℎ is the number of days selected within stratum h and 𝑠ℎ
2 is the sample variance within stratum 

h. 

 

Example 2.1: Simple Departure Counts  

Consider the problem of estimating July and August visitation at a site that has only two entrances.  Field 
staff will count departing visitors from dawn to dusk at both entrances (night visitation is assumed to be 
negligible).  We stratify the two-month period by type of day (weekend versus weekday) and by month, 
and we draw a simple random sample of four days from each stratum.   July 4th is included within the 
weekend stratum.  The sampling strata and randomly selected days are illustrated below: 

 

 

Note that the selected days are not as “spread out” as we might want in the month of August. For 
example, only one Saturday was selected, and all four weekdays are in the second half of the month.  It 
is not unusual to have samples that look like this; preventing them requires that we impose additional 
structure, through systematic sampling, the creation of additional strata, or the imposition of sampling 
restrictions such as those described earlier.     

The count results for the sampled days are as follows: 

 

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 3 4 5 1 2

7 8 9 10 11 12 6 4 5 6 7 8 9 3

14 15 16 17 18 19 13 11 12 13 14 15 16 10

21 22 23 24 25 26 20 18 19 20 21 22 23 17

28 29 30 31 27 25 26 27 28 29 30 24

31

July August
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Stratum 

Total 
Days 
(Nh) 

Sampled 
Days 
(nh) 

 
Visitor Counts on Sampled Days 

Sample 
Mean 
(�̅�ℎ) 

Sample 
Variance 

(𝑠ℎ
2) Day 1 Day 2 Day 3 Day 4 

1 – July 
weekend 9 4 3,956 2,193 4,334 1,221 2,926 2,162,559 
2 – July 
weekday 22 4 854 1,004 289 300 612 137,967 
3 – August 
weekend 10 4 2,308 3,205 4,500 845 2,714 2,362,958 
4 – August 
weekday 21 4 339 875 1,104 277 649 164,195 

 

Total estimated trips are given by: 

�̂� = ∑ 𝑁ℎ

𝐻

ℎ=1

�̅�ℎ 

                                                                  = (9)(2,926) + (22)(612) + (10)(2,714) + (21)(649) 

                                                     = 80,561 trips 

The calculation of the standard error is illustrated in the following table: 

h 
𝑛ℎ

𝑁ℎ
 𝑁ℎ

2 
𝑠ℎ

2

𝑛ℎ
 (1 −

𝑛ℎ

𝑁ℎ
) 𝑁ℎ

2
𝑠ℎ

2

𝑛ℎ
 

1 0.444 81 540,640 24,328,793 
2 0.182 484 34,492 13,658,725 
3 0.400 100 590,739 35,444,365 
4 0.190 441 41,049 14,654,396 

   Total: 88,086,279 
 

 

SE(�̂�𝑠𝑡𝑟) = √∑ (1 −
𝑛ℎ

𝑁ℎ
) 𝑁ℎ

2 𝑠ℎ
2

𝑛ℎ

𝐻
ℎ=1 = √88,086,279 = 9,385 

 

 

Thus, the overall estimate of July/August trips is 80,561, with a standard error of 9,385 trips.   

The standard error is rather large, which is not surprising when one considers the day-to-day variation in 
the trip numbers and the fact that we only sampled four days from each stratum.   Given the very large 
sample variances in the weekend strata, it is likely that we could have obtained a more precise estimate 
of total trips if we had allocated a greater share of our sampling days to weekends.   Of course, greater 
precision could also have been achieved by increasing the overall sample size, but this would have led to 
higher costs.  
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Despite the simplicity of simple departure counts, there are several practical obstacles that may arise, 
including: 
 

 Multiple Departures:  At some parks, visitors may leave the boundaries of the site more than 
once during a single trip.  For example, beach visitors may leave for ice cream, lunch, or to 
get something from their vehicle.  At small, low-visitation sites, field personnel may be able 
to track this type of behavior through direct observation, only tallying visitors when they are 
confident they have left for the day.  At other sites, it will be obvious when visitors are 
leaving for the day, as they will have their recreational equipment with them (e.g., cooler, 
fishing pole, or boat).   
 
When it is difficult to definitively establish whether or not a visitor is leaving, field personnel 
can ask departing visitors a simple question, such as:  “Are you leaving for the day?”  Despite 
the simplicity of the question, interacting with visitors invariably increases the complexity of 
implementation and analysis, as one must consider non-response, missed visitors, language 
issues, additional training of field personnel, and other issues.  Furthermore, in the absence 
of a litigation exemption, the field effort would need to undergo a Paperwork Reduction Act 
review.27   
 

 Identifying Recreational Visitors:  If we are interested in estimating the number of 
recreational trips to a site, it is important that non-recreational visitors be excluded from 
the counts.  Park rangers and other park service employees will typically be wearing a 
uniform, and it will be simple to exclude them from the counts.  Although contractors may 
be somewhat more difficult to identify, we have generally found that it is relatively simple to 
identify non-recreational visitors through their vehicles, clothing, activities, or equipment.  
At sites where there is some ambiguity, departing visitors could be intercepted and asked 
about the primary purpose of their trip to the site.   
 

 
 

  

                                                           
27 If identical questions are posed to more than nine individuals, then the Paperwork Reduction Act requires 
approval by the Office of Management and Budget.  The approval process typically takes more than nine months 
to complete, although an expedited process is available in certain situations.  
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DEPARTURE COUNTS WITH SAMPLING OF SHIFTS 

In order to implement the simple departure counts described above, field personnel must count 
departing visitors all day long.  While this may be feasible at sites that have limited hours (e.g., sites that 
are open to the public from 9:00 a.m. to 5:00 p.m.), it is a tall order at sites that are open from dawn to 
dusk.  At these sites, the daylight hours are often split into two shifts, such as from 6:00 a.m. to 1:00 
p.m. (the “AM” shift) and from 1:00 p.m. to 8:00 p.m. (the “PM” shift).  Each shift is covered by a 
separate field team to limit overtime hours and errors due to fatigue.  When both shifts are covered by 
field personnel on every sampled day, the counts for the two shifts can be combined, and the “simple 
departure counts” methodology described in the previous section can be used to estimate visitation.  
For example, if the AM count on a sampled day is 300, and the PM count on the same day is 400, then 
the AM/PM distinction can be ignored, and a total count of 700 can be used in the analysis. 

However, rather than covering both the AM and the PM shifts, it is sometimes more convenient to 
randomly select a single shift for counts on every sampled day.  The benefit of sampling shifts is that it 
allows one to complete a count study with a smaller field team, which simplifies hiring, training, and 
supervision.  When a single shift is selected for counts on every sampled day, one field team can be used 
to cover each entrance as opposed to two.  If desired, one can compensate for the loss in precision that 
results from the reduction in counting time by increasing the number of sampled days. 

The primary disadvantage associated with the sampling of shifts is increased statistical complexity.  
When a single shift is randomly selected on each sampled day, we move from a stratified random 
sampling framework to the somewhat more complex framework of two-stage cluster sampling.  Every 
day can be viewed as a single cluster that contains exactly two sampling units, the AM shift and the PM 
shift: 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

The first stage of the cluster sampling involves drawing a random sample of days.  The second stage 
involves drawing a random sample of shifts on each selected day.  The sample size for this second stage 
is one, as only one shift is selected on any given day.  In the illustration below, the large dark blue 
rectangles depict the random selection of days (the first stage), while the smaller light blue ovals depict 
the random selection of shifts on each selected day (the second stage).  

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

AM 
PM 

 

When randomly sampling shifts, it is often useful to sample either the AM or the PM shift at a higher 

rate.  For example, at beaches, the vast majority of visitor departures occur in the afternoon, so one 

might assign a selection probability of 0.25 to the AM shift and 0.75 to the PM shift.  On the other hand, 

if we were counting visitor arrivals at a hiking trailhead, we might want to assign a higher selection 

probability to the AM shift.   
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Estimating Total Visitation 

Total visitors can be estimated using a modified version of the estimator described in Chapter 1 in the 

section on cluster sampling.  In that section, we found that an unbiased estimator of the total is 

provided by 

�̂� =
𝑁

𝑛
∑ 𝑀𝑖𝑦�̅�

𝑛

𝑖=1

 

where N is the total number of clusters (e.g., days), n is the number of sampled clusters (e.g., selected 

days), Mi  is the number of sampling units in cluster i (e.g., two shifts per day), and �̅�𝑖  is sample mean for 

cluster i.   If we substitute the definition for the sample mean, 𝑦�̅�, the above expression can be rewritten 

in a form that is instructive:  

�̂� = ∑ ∑
𝑁

𝑛

𝑚𝑖

𝑝=1

𝑀𝑖

𝑚𝑖
𝑦𝑝𝑖

𝑛

𝑖=1

 

Here, 𝑚𝑖 is the sample size within cluster i and 𝑦𝑝𝑖  is the value associated with the pth selected unit 

within cluster i.  In this expression, 
𝑁

𝑛
 is simply the inverse of the probability of selecting any given 

cluster.  Furthermore, 
𝑀𝑖

𝑚𝑖
 is the inverse of the probability of selecting a given sampling unit within cluster 

i, conditional on the selection of cluster i.  Thus,    
𝑁

𝑛

𝑀𝑖

𝑚𝑖
 is the inverse of the overall inclusion probability 

for a given sampling unit.  As we discussed in the section on sampling weights in Chapter 1, population 

totals can be estimated by weighting by these inverse inclusion probabilities.   Letting wpi  represent the 

inverse of the inclusion probability for the pth sampling unit in cluster i,   

�̂� = ∑ ∑ 𝑤𝑝𝑖

𝑚𝑖

𝑝=1

𝑦𝑝𝑖

𝑛

𝑖=1

 

Returning to the problem at hand, an unbiased estimate of total visitors can be obtained by calculating a 

sampling weight for each shift, multiplying the sampling weight by the departure count for that shift, 

then summing the result across all sampled shifts.    This approach to estimating total visitation is useful 

in simplifying notation when we use stratified sampling of days and non-uniform selection probabilities 

for shifts. 

Suppose the days in our study period are divided into H different mutually exclusive strata, each of 

which contains 𝑁ℎ days.  Within each stratum, 𝑛ℎ days are randomly selected for counts, and a single 

shift is randomly drawn on each sampled day.  Letting πhi represent the selection probability for the 

selected shift in stratum h on day i, total visits can be estimated using the following expression: 



Chapter 2: On-Site Counts by Field Personnel 
 

51 
 

�̂� = ∑ ∑ (
𝑁ℎ

𝑛ℎ
)

𝑛ℎ

𝑖=1

𝐻

ℎ=1

(
1

𝜋ℎ𝑖
) 𝑦ℎ𝑖 

Note that (
𝑁ℎ

𝑛ℎ
) is simply the inverse of the probability of selecting any given day within stratum h and 

(
1

𝜋ℎ𝑖
) is the inverse of the selection probability for the shift selected within stratum h on day i.  Thus, the 

product of these two expressions, (
𝑁ℎ

𝑛ℎ
) (

1

𝜋ℎ𝑖
), represents the inverse of the overall inclusion probability 

for a given shift, or the sampling weight for that shift, 𝑤ℎ𝑖.  Consequently, the above expression can be 
rewritten as  

�̂� = ∑ ∑ 𝑤ℎ𝑖

𝑛ℎ

𝑖=1

𝐻

ℎ=1

𝑦ℎ𝑖 

 

The intuition underlying this estimator is simple.  Suppose we sample the AM and PM shifts with 

probability 0.5.  Then 
1

𝜋ℎ𝑖
  is equal to two, so multiplying by  

1

𝜋ℎ𝑖
  is equivalent to doubling every count to 

cover the non-counted shifts.  Suppose further that we sample one out of four days in each stratum.  

Then   
𝑁ℎ

𝑛ℎ
 is equal to four, and multiplying by 

𝑁ℎ

𝑛ℎ
 is equivalent to quadrupling every one of these 

expanded shift counts to cover the non-counted days.  Overall, the impact is to multiply every shift 
count by a factor of eight (or two times four), to cover uncounted shifts and uncounted days. 

     

Estimated Variance for Total Visitation 

Variance is estimated by examining variability among sampled units.  This points to a problem when a 
single shift is selected for departure counts on each sampled day:  with departure counts from only one 
shift (either AM or PM), it is impossible to calculate the within-day variance of the counts.   That is, we 
have no information that allows us to determine whether visitation tends to be similar or very different 
between the two shifts on a single day.   Of course, we do have data from AM and PM shifts, but these 
data are from different days, so it is not possible to determine whether any observed differences are 
due to within-day variance or to factors that vary across days.   

Pollock et al. (1994, pg. 42) suggest an approach to approximating the variance in these situations.  They 
note that when simple random sampling or stratified random sampling is used in the first stage of a 
multi-stage design, the sample variance between the estimated primary unit values provides a 
conservative approximation of the variance.   

Letting �̂�ℎ𝑖 =
𝑦ℎ𝑖

𝜋ℎ𝑖
 represent estimated visits for the ith sampled day within stratum h and letting �̅̂�ℎ 

represent the sample mean estimated visits within stratum h, the sample variance associated with the 
estimated visits within stratum h would be given by:     

�̂�(�̂�ℎ) =
∑ (�̂�ℎ𝑖 −  �̅̂�ℎ)

2𝑛ℎ
𝑖=1

𝑛ℎ − 1
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The conservative estimate of the overall variance would then be given by: 

�̂�(�̂�) ≈ ∑ 𝑁ℎ
2

�̂�(�̂�ℎ)

𝑛ℎ

𝐻

ℎ=1

 

 

 

Example 2.2: Departure Counts with Sampling of Shifts 

Suppose we are interested in estimating visitation at a site during a two-week period in late July.28  The 
site has four entrances, and we will station field personnel at each of these entrances to conduct 
departure counts.       

We stratify the two-week period by weekend/weekday and we randomly select four days from each 
stratum:   

 

On each selected day, we randomly select a single shift (AM or PM) for departure counts.  Because we 
expect more visitors to leave the site in the afternoon than in the morning, we sample the PM shift with 
probability 0.75 and we sample the AM shift with probability 0.25.    

Total visitation for the two-week period is estimated by  

�̂� = ∑ ∑ (
𝑁ℎ

𝑛ℎ
)

𝑛ℎ

𝑖=1

𝐻

ℎ=1

(
1

𝜋ℎ𝑖
) 𝑦ℎ𝑖 

where: 

𝑁ℎ = total number of days in stratum h 
𝑛ℎ = number of sampled days in stratum h 
𝜋ℎ𝑖 = selection probability for the shift that was randomly selected on the ith sampled day 

within stratum h (0.75 for all PM shifts and 0.25 for all AM shifts) 
𝑦ℎ𝑖 = number of visitors observed on the ith sampled day within stratum h 

The calculation of �̂� is illustrated in the table below. 

                                                           
28 While visitation studies typically cover much longer periods, focusing on two weeks simplifies the arithmetic in 
the example.   

Mo Tu We Th Fr Sa Su

-- -- -- -- -- --

-- -- -- -- -- -- --

14 15 16 17 18 19 20

21 22 23 24 25 26 27

-- -- -- --

July
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Date 
 

h 
 
i 

 
Shift 

 
𝑦ℎ𝑖 𝑛ℎ 𝑁ℎ   𝜋ℎ𝑖 

1

𝜋ℎ𝑖
 

𝑁ℎ

𝑛ℎ
 (

𝑁ℎ

𝑛ℎ
) (

1

𝜋ℎ𝑖
) 𝑦ℎ𝑖 

7/14 1 1 AM 9 4 10 0.25 4.00 2.5 90 
7/16 1 2 PM 14 4 10 0.75 1.33 2.5 47 
7/17 1 3 AM 9 4 10 0.25 4.00 2.5 90 
7/23 1 4 PM 11 4 10 0.75 1.33 2.5 37 
7/19 2 1 PM 32 4 4 0.75 1.33 1.0 43 
7/20 2 2 PM 41 4 4 0.75 1.33 1.0 55 
7/26 2 3 AM 28 4 4 0.75 1.33 1.0 37 
7/27 2 4 PM 18 4 4 0.25 4.00 1.0 72 

        Total (�̂�): 470 

 

Thus, we estimate a total of 470 trips for the two-week period.  In order to calculate the variance of this 
estimate, we need to first calculate the variance of the daily trip estimates within each stratum, or  

�̂�(�̂�ℎ) =
∑ (�̂�ℎ𝑖 −  �̅̂�ℎ)

2𝑛ℎ
𝑖=1

𝑛ℎ − 1
 

Recall that the daily trip estimates in this equation are simply equal to the shift count divided by the 

shift selection probability, or �̂�ℎ𝑖 =
𝑦ℎ𝑖

𝜋ℎ𝑖
⁄ .  The calculation of these daily trip variances are illustrated in 

the tables below: 

Variance for Stratum 1 (Weekdays): 

y1i �̂�ℎ𝑖 �̅̂�ℎ (�̂�ℎ𝑖 −  �̅̂�ℎ)
2

 

9 36.0 26.3 93.4 
14 18.7 26.3 58.8 
9 36.0 26.3 93.4 

11 14.7 26.3 136.1 

  Total: 381.8 
 

�̂�(�̂�1) =
381.8

4 − 1
= 127.3 

 

 

Variance for Stratum 2 (Weekends): 

y2i �̂�ℎ𝑖 �̅̂�ℎ (�̂�ℎ𝑖 − �̅̂�ℎ)
2
 

32 42.7 51.7 81.0 
41 54.7 51.7 9.0 
28 37.3 51.7 205.4 
18 72.0 51.7 413.4 

  Total: 708.9 
 

�̂�(�̂�2) =
708.9

4 − 1
= 236.3 

 

 

The conservative estimate of the overall variance is then given by: 

�̂�(�̂�) ≈ ∑ 𝑁ℎ
2

�̂�(�̂�ℎ)

𝑛ℎ

𝐻

ℎ=1

 

                    = 102 127.3

4
+ 42 236.3

4
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   = 4,127          

with standard error given by 

SE(�̂�) = √4,127 = 64.2 
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DEPARTURE COUNTS WITH SAMPLING OF A SINGLE 
ENTRANCE 

When parks have multiple entrances and there are not enough field personnel available to count visitor 
departures at all of them, one can draw a random sample of entrances and complete departure counts 
at the subset of entrances that were randomly drawn.  With the random selection of days and 
entrances, we now have what is called a “spatio-temporal” sampling frame (Exhibit 2.6).  That is, we are 
sampling in two dimensions: across space and across time.  
 
Exhibit 2.6: Spatio-Temporal Sampling 

 
  Time Dimension  
  

Day 1 Day 2 Day 3 Day 4 Day 5 

 
Space 

Dimension 

Entrance 1 342 trips 251 trips 39 trips 203 trips 145 trips 

Entrance 2 160 trips 78 trips 99 trips 130 trips 154 trips 

Entrance 3 77 trips 91 trips 134 trips 130 trips 176 trips 

 Entrance 4 34 trips 45 trips  22 trips 30 trips  18 trips 

 

 = sampled day/entrance 

       

 
One approach to sampling from this spatio-temporal frame is to draw a simple random sample.  This 
would be equivalent to throwing every entrance/day cell from the above table into a hat and randomly 
drawing n cells.  The problem with simple random sampling, however, is that it is entirely possible that 
we could select more entrances on a single day than we could cover with the available field personnel.  
As a result, rather than drawing a simple random sample, cluster sampling is typically used.  That is, we 
first draw a set of days (i.e., select columns in the table above), and we then draw a fixed number of 
locations on every selected day.  This approach guarantees that all sampled entrances can be covered by 
the field team.   
 
Of course, a key decision when sampling entrances is to decide how many entrances will be covered on 
any selected day.  This section discusses situations where a single entrance is covered, while the next 
section discusses situations where multiple entrances are covered.29  Our discussion assumes that the 
entire day will be covered by field personnel at each entrance.  That is, either the day is short enough to 
be covered by a single shift, field personnel plan to work overtime to cover the entire day, or multiple 
field teams will cover all shifts at every selected entrance.  
  
When a single entrance is randomly selected for departure counts on every sampled day, the statistical 
framework is identical to the framework described in the previous section, where we sampled days and 
then randomly selected a single shift on every sampled day.  It doesn’t matter that we are focusing on 
entrances rather than shifts; in the end, we are simply selecting a single departure count from a set of 

                                                           
29 The methodology in this section could also be applied to situations where we randomly select a shift, then an 
entrance.  This would be equivalent to selecting shift-entrance departure counts, and the inclusion probability 
would be equal to the selection probability for the shift times the selection probability for the entrance.   
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departure counts that are relevant for a given day.  When we were sampling shifts, there were two 
relevant departure counts, one for AM and one for PM.  When we sample k entrances, there are k 
relevant departure counts, one for each entrance.     
 
As a result, the estimator for total visits is identical to the estimator provided in the previous section, 
but with a slightly different interpretation applied to π, the selection probability for departure counts.  
As before, allow the days in our study period to be divided into H different mutually exclusive strata, 
each of which contains 𝑁ℎ days.  Within each stratum, 𝑛ℎ days are randomly selected for counts, and a 
single entrance (as opposed to a single shift) is randomly drawn on each sampled day.  Letting  𝜋ℎ𝑖 and 
𝑦ℎ𝑖 represent the selection probability and departure count, respectively, for the selected entrance in 
stratum h on day i, total visits can once again be estimated using the following expression: 

 

�̂� = ∑ ∑ (
𝑁ℎ

𝑛ℎ
)

𝑛ℎ

𝑖=1

𝐻

ℎ=1

(
1

𝜋ℎ𝑖
) 𝑦ℎ𝑖 . 

As before, if we let �̂�ℎ𝑖 =
𝑦ℎ𝑖

𝜋ℎ𝑖
 represent estimated visits for the ith sampled entrance within stratum h 

and we let �̅̂�ℎ represent the sample mean estimated visits within stratum h, then the sample variance 
associated with the estimated visits within stratum h would be given by:     

�̂�(�̂�ℎ) =
∑ (�̂�ℎ𝑖 − �̅̂�ℎ)

2
𝑛ℎ
𝑖=1

𝑛ℎ − 1
, 

 
and a conservative estimate of the variance of �̂� is given by: 

�̂�(�̂�) ≈ ∑ 𝑁ℎ
2

�̂�(�̂�ℎ)

𝑛ℎ
.

𝐻

ℎ=1

 

 
 
Note that entrances do not need to be selected with equal probability.  In fact, the precision of our 
estimate can be improved by assigning higher selection probabilities to entrances with higher expected 
visitor counts.  While it is unlikely that we would have quantitative data on visitor counts prior to 
designing the count study (if we had such information, the count study probably wouldn’t be 
necessary!), site managers are typically able to at least provide general information about relative use of 
various entrances.  This information can be used to sample entrances with probabilities proportional to 
expected use.  Suppose, for example, that a site manager knows that Entrances A and B have roughly 
equivalent visitation levels and that Entrance C is approximately half as busy as A and B.  In this case, the 
following selection probabilities would be roughly proportional to expected use:  0.4 for Entrance A, 0.4 
for Entrance B, and 0.2 for Entrance C.   

 
One caution is warranted with regard to differential selection probabilities.  Specifically, the use of 
extremely low selection probabilities can lead to estimates with large variances.  For example, suppose 
an extremely low-use entrance is assigned a selection probability of 0.001.  If we sample 1 in 10 
weekdays, then the weekday sampling weight for this entrance would be equal to 10,000 = (0.1 x  
0.001)-1.   Although it is unlikely, if we did happen to select this entrance for departure counts on a 
particular weekday, then every observed visit would add 10,000 visits to our estimated total!  If the day 
happened to have unusually nice weather and we counted 100 visits, these 100 visits would increase our 
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estimated total by 1,000,000 visits.30  In practice, it is probably advisable to avoid selection probabilities 
lower than 0.05 or to completely eliminate extremely low-use entrances from the study.    

 
 
Example 2.3: Departure Counts with Sampling of a Single Entrance 

Consider again the problem in Example 2.2, where we are interested in estimating visitation at a site 
with four entrances during a two-week period in late July.  We stratify the two-week period by 
weekend/weekday and we randomly select four days from each stratum. 

In contrast to the previous example, we plan to have field personnel count departures during both shifts 
on every sampled day.  However, rather than covering all four entrances, we will randomly select a 
single entrance for departure counts.  Information from management indicates that Entrance #1 
represents approximately 20% of visitation in July, Entrance #2 represents 30%, Entrance #3 represents 
40%, and Entrance #4 represents 10%.   We decide to use these percentages as the selection 
probabilities.   

Total visitation for the two-week period is estimated by  

�̂� = ∑ ∑ (
𝑁ℎ

𝑛ℎ
)

𝑛ℎ

𝑖=1

𝐻

ℎ=1

(
1

𝜋ℎ𝑖
) 𝑦ℎ𝑖 

The calculation of �̂� is illustrated in the table below. 

Selected 
Date 

Selected 
Entrance 

Visitors 
𝑦ℎ𝑖 

 
h 𝑛ℎ 𝑁ℎ 𝜋ℎ𝑖 

1

𝜋ℎ𝑖
 

𝑁ℎ

𝑛ℎ
 (

𝑁ℎ

𝑛ℎ
) (

1

𝜋ℎ𝑖
) 𝑦ℎ𝑖 

7/14 2 6 1 (WD) 4 10 0.30 3.33 2.5 50 
7/16 3 12 1 (WD) 4 10 0.40 2.50 2.5 75 
7/17 1 8 1 (WD) 4 10 0.20 5.00 2.5 100 
7/19 3 12 2 (WE) 4 4 0.40 2.50 1.0 45 
7/20 2 10 2 (WE) 4 4 0.30 3.33 1.0 53 
7/23 3 15 1 (WD) 4 10 0.40 2.50 2.5 94 
7/26 4 5 2 (WE) 4 4 0.10 10.00 1.0 70 
7/27 1 11 2 (WE) 4 4 0.20 5.00 1.0 65 

        Total (�̂�): 552 

 

Thus, we estimate a total of 552 trips for the two-week period.  (The fact that this is larger than the 
result obtained in our previous example, 470, has no significance, as the visitation numbers are 
completely hypothetical.)  In order to calculate the variance of this estimate, we need to first calculate 
the variance of the daily trip estimates within each stratum, or  

�̂�(�̂�ℎ) =
∑ (�̂�ℎ𝑖 −  �̅̂�ℎ)

2𝑛ℎ
𝑖=1

𝑛ℎ − 1
 

                                                           
30 Pollock et al. (1994) cite the example of a boy scout troop happening to show up at a low-use site.  
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Recall that the daily trip estimates in this equation are simply equal to the shift count divided by the 

shift selection probability, or �̂�ℎ𝑖 =
𝑦ℎ𝑖

𝜋ℎ𝑖
⁄ .  The calculation of these daily trip variances are illustrated in 

the tables below: 

Variance for Stratum 1 (Weekdays): 

y1i �̂�ℎ𝑖 �̅̂�ℎ (�̂�ℎ𝑖 −  �̅̂�ℎ)
2

 

6 20.0 31.9 141.0 
12 30.0 31.9 3.5 
8 40.0 31.9 66.0 

15 37.5 31.9 31.6 

  Total: 242.2 
 

�̂�(�̂�1) =
242.2

4 − 1
= 80.7 

 

 

Variance for Stratum 2 (Weekends): 

y2i �̂�ℎ𝑖 �̅̂�ℎ (�̂�ℎ𝑖 − �̅̂�ℎ)
2
 

18 45.0 58.3 177.8 
16 53.3 58.3 25.0 
7 70.0 58.3 136.1 

13 65.0 58.3 44.4 

  Total: 383.3 
 

�̂�(�̂�2) =
383.3

4 − 1
= 127.8 

 

 

The conservative estimate of the overall variance is then given by: 

�̂�(�̂�) ≈ ∑ 𝑁ℎ
2

�̂�(�̂�ℎ)

𝑛ℎ

𝐻

ℎ=1

 

                    = 102 80.7

4
+ 42 127.8

4
 

   = 2,529        

with standard error of 

SE(�̂�) = √2,529 = 50.3 
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DEPARTURE COUNTS WITH SAMPLING OF MULTIPLE 
ENTRANCES 

If sufficient field personnel are available, we may choose to sample multiple entrances for departure 
counts on every selected day.  When all of the entrances have the same selection probability, then we 
have a classic cluster sampling problem:  every sampled day is a cluster of M departure counts (one for 
each entrance), and we randomly select m of these departure counts when we draw a sample of 
entrances.      
 
In the table below, there are seven clusters of departure counts, one for each day.  For simplicity, we 
assume only one shift per day.  The large, dark blue rectangles depict the first stage of sampling, where 
three of these clusters are randomly selected.  Each selected cluster has four departure counts (M = 4), 
one for each entrance.  The small, light blue ovals depict the second stage of sampling, where two of the 
entrances (m = 2) are selected for departure counts on each of the three selected days.   

 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Entrance #1 

Entrance #2 

Entrance #3 

Entrance #4 

Entrance #1 

Entrance #2 

Entrance #3 

Entrance #4 

Entrance #1 

Entrance #2 

Entrance #3 

Entrance #4 

Entrance #1 

Entrance #2 

Entrance #3 

Entrance #4 

Entrance #1 

Entrance #2 

Entrance #3 

Entrance #4 

Entrance #1 

Entrance #2 

Entrance #3 

Entrance #4 

Entrance #1 

Entrance #2 

Entrance #3 

Entrance #4 

 
 
As before, suppose the days in our study period are divided into H mutually exclusive strata, each of 
which contains 𝑁ℎ days.  Within each stratum, 𝑛ℎ days are randomly selected for counts.  Total visitors 
can be obtained by summing the standard cluster sampling estimator across the H strata: 
 
 

 �̂� = ∑ ∑
𝑁ℎ

𝑛ℎ
𝑀�̅�ℎ𝑖

𝑛ℎ

𝑖=1

𝐻

ℎ=1

 

where M  is the total number of entrances and �̅�ℎ𝑖 is sample mean for the ith sampled day within 
stratum h.    
 
The standard error of the total is estimated by: 
 

𝑆𝐸(�̂�) = √∑ (𝑁ℎ
2 (1 −

𝑛ℎ

𝑁ℎ
)

𝑠ℎ𝑌
2

𝑛ℎ
+

𝑁ℎ

𝑛ℎ
∑ (1 −

𝑚

𝑀
) 𝑀2 𝑠ℎ𝑖

2

𝑚

𝑛ℎ

𝑖=1

)

𝐻

ℎ=1

 

where we define 𝑠ℎ𝑌
2  as: 
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𝑠ℎ𝑌
2 =

∑ (𝑀�̅�𝑖 −

𝑁ℎ
𝑛ℎ

∑ 𝑀�̅�ℎ𝑖
𝑛ℎ
𝑖=1

𝑁ℎ
)

2

𝑛ℎ
𝑖=1

𝑛ℎ − 1
. 

 
When multiple entrances are sampled with unequal probabilities, estimation formulas become more 
complex.   Letting πk represent the inclusion probability for entrance k and letting K represent the 
number of entrances, total visits on a sampled day can be estimated using the Horvitz-Thompson 
estimator (Horvitz and Thompson 1952): 

�̂� = ∑
𝑦𝑘

𝜋𝑘

𝐾

𝑘=1

 

This estimator simply weights the count at location k by the inverse of the inclusion probability.  Putting 
this estimator within our standard framework, where we begin by drawing a stratified random sample of 
days, total visitation would be estimated by: 
 

�̂� = ∑ ∑ ∑
𝑁ℎ

𝑛ℎ

𝑦ℎ𝑖𝑘

𝜋𝑘

𝐾

𝑘=1

𝑛ℎ

𝑖=1

𝐻

ℎ=1

 

Note that this estimator is simply the weighted sum of the departure counts, where the weight for each 

count is equal to the inverse of its inclusion probability, or 
𝑁ℎ

𝑛ℎ

1

𝜋𝑘
. Unbiased estimates of the variance of 

the Horvitz-Thompson estimator are provided in Lohr (1999, pg 197).   

When multiple entrances are sampled with unequal probabilities, it is important that the correct 
inclusion probabilities be specified.  This is more complicated than it appears at first.  For example, 
suppose we sample two out of four entrances.  Entrances are labeled A, B, C, and D and the assigned 
probabilities are 0.1, 0.3, 0.5, and 0.1, respectively.  The overall selection probability for Entrance A is 
greater than 0.1 because the entrance might be the first or second selected entrance.  In fact, the 
possible samples that include Entrance A are:  {A,B}, {A,C}, {A,D},{B,A},{C,A},and {D,A}.   
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INSTANTANEOUS COUNTS   

Rather than directly counting visitors as they leave a site, it is sometimes more practical to obtain 
indirect estimates of trips by counting the number of visitors on site at any given time (Exhibit 2.6).  By 
implementing these “instantaneous counts” at randomly selected times, one can estimate the number 
of visitor hours, then convert this visitor-hour estimate into a trip estimate by dividing by the average 
length of a trip.   Instantaneous counts are often implemented at sites with extremely diffuse access, 
where it is difficult to define discrete entrances.  The counts can be obtained through overflights or 
through rapid on-site counts by field personnel.   

Exhibit 2.6: Snapshot of Visitors for Instantaneous Counts 

 

 

As the concept of a “visitor-hour” can be somewhat abstract, consider a simple example.  We would like 
to estimate visitation at a park that is open from 9:00 a.m. to 5:00 p.m.  Visitors are only allowed to 
enter or leave the park on the hour.31  The arrival/departure times for all park visitors on a hypothetical 
sampling day look like this:   

Visitor Arrival Time Departure Time Trip Duration 

A 9:00 a.m. 3:00 p.m. 6 hours 
B 9:00 a.m. 11:00 a.m. 2 hours 
C 10:00 a.m. 4:00 p.m. 6 hours 
D 10:00 a.m. 2:00 p.m. 4 hours 
E 10:00 a.m. 11:00 a.m. 1 hour 
F 11:00 a.m. 1:00 p.m. 2 hours 
G 12:00 p.m. 4:00 p.m. 4 hours 
H 1:00 p.m. 4:00 p.m. 3 hours 
I 2:00 p.m. 3:00 p.m. 1 hour 
J 4:00 p.m. 5:00 p.m. 1 hour 

  

 
Average 

Duration: 

 
3.0 hours 

                                                           
31 While this assumption is obviously unrealistic, it serves to clarify the mathematics. 
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Suppose we do not know these arrival and departure times but we do know that the average trip length 
is 3.0 hours.  We take an aerial photo of the park every hour, beginning at 9:30 a.m. and ending at 4:30 
p.m. (Exhibit 2.7).   These eight aerial photos provide the following count data: 

 

Time Visitors on Site Visitor Count 

9:30 a.m. A,B 2 
10:30 a.m. A,B,C,D,E 5 
11:30 a.m. A,C,D,F 4 
12:30 p.m. A,C,D,F,G 5 
1:30 p.m. A,C,D,G,H 5 
2:30 p.m. A,C,G,H,I 5 
3:30 p.m. C,G,H 3 
4:30 p.m. J 1 

 Total: 30  
 

Exhibit 2.7: Aerial Photos for Instantaneous Counts 

 

 

As these aerial photos are taken every hour and visitors can only enter/leave on the hour, every visitor 
counted in the photos represents a single visitor-hour at the park.  For example, five visitors were 
counted in the 10:30 a.m. photo.  This means that these five visitors were at the park between 10:00 
and 11:00 (at a minimum), so that each of the five visitors contributed exactly one visitor-hour during 
this time period.  The total across the eight instantaneous counts is 30 visitor hours.  If we divide this 
visitor-hour total by the average trip length (3 hours), we find that there were exactly ten trips taken to 
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the park on this day (30 ÷ 3.0 = 10).  This result is consistent with the tables above, which describe trips 
taken by visitors A, B, C, D, E, F, G, H, I, and J.32 

 

Visitation Estimates from Instantaneous Counts 

In implementing an instantaneous count study, one would typically use a two-stage approach.  In the 
first stage, we would randomly select days for the counts, with days stratified by month and type of day 
(weekend versus weekday).  In the second stage, we would randomly select times from the available 
daylight hours for the instantaneous counts on every selected day.  This is a type of cluster sample, and 
the data would be analyzed as such.   

Once again, suppose the days in our study period are divided into H different mutually exclusive strata, 
each of which contains 𝑁ℎ days.  Within each stratum, 𝑛ℎ days are randomly selected for instantaneous 
counts.  The average number of visitors observed during the mi counts on the ith selected day within 
stratum h is represented by 𝑐ℎ̅𝑖.  The notation for counts is changed here from y to c to distinguish 
instantaneous visitor counts from completed visits.   

 
Total visitor hours can be estimated by summing the standard cluster sampling estimator across the H 
strata: 
 

 �̂� = ∑
𝑁ℎ

𝑛ℎ
∑ 𝑀𝑐ℎ̅𝑖

𝑛ℎ

𝑖=1

𝐻

ℎ=1

 

where M  is the number of hours of daylight per day (the period from which the instantaneous count 
times were selected).    
  
The standard error of the total is estimated by: 

𝑆𝐸(�̂�) = √∑ (𝑁ℎ
2 (1 −

𝑛ℎ

𝑁ℎ
)

𝑠ℎ𝐶
2

𝑛ℎ
+

𝑁ℎ

𝑛ℎ
∑ 𝑀2 𝑠ℎ𝑖

2

𝑚

𝑛ℎ

𝑖=1

)

𝐻

ℎ=1

 

where we define 𝑠ℎ𝐶
2  as: 

                                                           
32 Alternatively, consider a parking lot with individual meters that charge one dollar per hour.  In this context, one 

could consider estimating the number of vehicle-hours (as opposed to visitor-hours) on a given day through hourly 
vehicle counts.  Of course, the sum of these hourly counts would not represent the total number of vehicles that 
parked in the lot on that day, as cars are free to come and go.  Instead, the sum of the hourly counts represents 
the total revenue for the day.  The total revenue divided by the average parking time would equal the number of 
unique vehicles that parked in the lot that day. 
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Sampling of Times for Instantaneous Counts 

In the above discussion we assume that a simple random sample of times is drawn for implementing 
instantaneous counts on each selected day.  Typically, we can obtain greater precision by ensuring that 
the instantaneous counts are spread out through the day.  This can be accomplished by stratified 
random sampling or systematic sampling.  With stratified random sampling, the daylight hours would be 
divided into mutually exclusive and exhaustive blocks of time, and one or more count times would be 
selected within each block using simple random sampling.  For example, if we were conducting four 
instantaneous counts on every selected day and daylight lasted from 8:00 a.m. to 8:00 p.m. (12 hours), 
we might divide the day into two periods (8:00 a.m. to 2:00 p.m. and 2:00 p.m. to 8:00 p.m.) and 
randomly select two times for instantaneous counts within each period.  Recall that at least two counts 
are required within each stratum in order to estimate variance.     

With systematic sampling, we would divide the day into m time blocks, randomly select a time within 
the first block, then implement counts every M/m hours until the end of the day, beginning at the 
randomly selected time.   That is, with M = 12 and m = 4, the day would be divided into four, three-hour 
time blocks: from 8-11, 11-2, 2-5, and 5-8.   If 9:12 a.m. were selected for the first count, counts would 
be conducted at 9:12 a.m., then every three hours thereafter: at 12:12 p.m., 3:12 p.m., and 6:12 p.m. 

 

Estimating Mean Trip Duration  

In order to estimate trips from an instantaneous count study, total visitor hours must ultimately be 
divided by mean trip duration.  This requires a parallel data collection effort involving visitor interviews.  
There are two different methodologies available for estimating mean trip duration through visitor 
interviews.  First, one can station field personnel at all entrances on randomly selected days, intercept a 
systematic sample of departing visitors (e.g., every kth departing visitor), and ask each sampled visitor to 
provide his or her arrival time.  Trip length is calculated as the difference between the interview time 
and the visitor’s arrival time.  In calculating an overall mean trip length, completed interviews must be 
weighted by the inverse of their selection probabilities.  As a result, one must track total visitor 
departures while conducting interviews so that the location- and day-specific sampling rates can be 
incorporated in calculating these selection probabilities.  In addition, if substantial nonresponse is 
anticipated, one should consider the possibility of recording observable characteristics for all departing 
visitors (e.g., activity, gender, group size, race/ethnicity, approximate age) and post-stratifying the 
interview data so that the weighted data more closely reflects the population of visitors.  This type of 
post-stratification can mitigate the potential impact of nonresponse bias and is discussed in further 
detail in Chapter 4.          

An alternative approach to estimating mean trip duration is to intercept a systematic sample of 
individuals during their visit and ask them when they arrived at the site and when they expect to leave 
for the day.  At sites where visitors are constantly moving from place to place, it may be challenging to 
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identify an intercept technique that would result in a representative sample of visitors.  However, there 
are many sites where visitors are relatively stationary for the majority of their trip, such as at beaches or 
fishing piers.  At these sites, field personnel can feasibly intercept a systematic sample if visitors at 
randomly selected times throughout the day.  As with departure interviews, one must carefully track the 
sampling rate in order to calculate appropriate selection probabilities, and one should consider the 
possibility of nonresponse adjustments to the final sampling weights.  In addition, the average duration 
must be calculated as a harmonic mean in order to compensate for the fact that trips with longer 
durations are more likely to be selected into the sample.  The harmonic mean is calculated as the 

inverse of the mean of 𝑑𝑖
−1, where 𝑑𝑖  is the trip duration associated with the ith interview. 

 

 

 

 



66 
 

CHAPTER 3 

 

 

AUTOMATED COUNTERS 

 

 

On-site visitor count studies can be expensive, as they typically require a large number of hours for field 
personnel.  Through the strategic placement of one or more automated counters, it is often possible to 
substantially reduce the cost of these studies.  One can take advantage of the correlation between on-
site visitor counts and automated counter tallies when estimating visitation, thus reducing the number 
of days required for on-site counts.33   

While simple automated counters have been used by public agencies to count vehicles for nearly a 
century (see Lay 1999), there has recently been an explosion of new devices that can be used to count 
vehicles, off-highway vehicles (OHVs), snowmobiles, bicycles, skiers, or pedestrians.  The devices take 
advantage of the many ways in which a moving object alters the ambient environment – such as 
exerting downward pressure on the surface of a path or road, emitting infrared radiation, reflecting 
light, and even altering the strength of the earth’s background magnetic field.  They generate tallies 
through a relatively simple underlying process: by monitoring the ambient environment and recording 
changes in this environment as counts.   

The chapter begins with a discussion of issues that are relevant to all types of automated counters, 
including device installation, monitoring, and calibration; data recording and data transmission; and 
protecting against failure.  Next, a detailed description of numerous automated count technologies is 

                                                           

33 Although this chapter focuses on automated counters, alternative data sources may also provide an auxiliary 

variable that is correlated with visitation.  At a beach, for example, the daily revenue at the concession stand may 
be closely tied to the number of visitors.  Alternatively, at many parks, the daily volume of refuse collected or the 
daily volume of water used would likely be highly correlated with visitation (Muhar et al. 2002).  At more remote 
parks, the number of camping permits or hiker registrations are likely to be correlated with visitation.  While such 
measures are not frequently used, they should not be ruled out at parks where installing and monitoring 
automated counters is likely to be challenging.  Of course, data on these auxiliary variables must be collected in a 
consistent manner over time in order to be useful in estimation.   
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provided, including video-based alternatives to traditional counters.  The chapter concludes with 
summary recommendations for selecting an appropriate automated counter for a specific application.  

 

COUNTER INSTALLATION AND MONITORING 

Despite their ability to simplify counts, automated counters are certainly not devices that can be 
installed and forgotten.  In order to ensure that a counter consistently provides accurate visitation 
estimates, careful attention to detail is required.  This section discusses several practical issues related 
to the installation and monitoring of automated counters, emphasizing procedures that minimize the 
risk of failure.   
 
Selecting a Location for the Counter 
 
Although the ideal location for an automated counter will depend to some extent on the specific 
technology selected, there are a few principles that cut across technologies.  An ideal location has the 
following characteristics: 

1. Single-File Travel:  The monitored section of trail or road should be relatively narrow in order to 
reduce the possibility that the objects to be counted will be traveling side by side when they 
pass by the counter.  Many different types of counters will undercount visitors or vehicles if they 
are traveling side by side—an effect referred to as “occlusion”.  

2. Absence of Resting Areas or Gathering Points:  The monitored area should not be a location 
where visitors or vehicles tend to pause, such as at a water fountain, bench, scenic overlook, 
interpretive sign, or stop sign.  Most automated counters use a time delay when detecting 
visitors or objects.  When a vehicle or person pauses in front of these counters, the time delay is 
ineffective and the counters may register multiple counts. In addition to pausing in front of a 
counter, the same visitor may pass by a counter multiple times at a resting area or gathering 
point.   

3. Ability to Camouflage the Counter:  The location should allow for opportunities to hide the 
counter in order to avoid diminishing the visitor experience and in order to reduce the risk of 
vandalism. 

4. Short Distance from Entrance:  When installed at a park entrance, counters should be located a 
short distance away from the true entrance (i.e., at least a few yards or so into the park) rather 
than at the entrance to ensure that non-visitors are not inadvertently counted.  For example, 
one would typically want to avoid counting pedestrians who take only a few steps onto a trail 
out of curiosity before turning around.  One would also typically want to avoid counting vehicles 
that enter the park simply to turn around.    

 
Counter Installation and Initial Checking 
 
Once a location has been selected, the counter can be installed and prepared for data collection.  
Installation times can range from ½ hour to several hours, depending on the type of counter used and 
the level of care employed.  After deploying the counter in the correct location with fresh batteries, field 
personnel should test the counter by passing by numerous times in different locations (such as the near 
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and far sides of a path or road), at different speeds, and while pursuing different activities (e.g., running, 
walking, skiing, or biking on trails; driving on a road).  After each pass-by, the counter should be 
examined to ensure that it registered exactly one count. If a count was not registered, then the counter 
should be adjusted.  Adjustments may include double-checking the battery, adjusting the angle relative 
to the trail or road, adjusting the height, adjusting the distance from the trail or road, or adjusting the 
sensitivity settings.  
 
As counters will often be deployed in relatively remote settings that are costly to access, it is critical that 
field personal plan carefully and take all necessary steps required to minimize the likelihood of failure 
during installation.  For example, field personnel should deploy and test the counter prior to bringing it 
to a park setting.  They should also bring spare batteries, a spare counter (if possible), all tools required 
for installation, manufacturer’s manuals, and phone numbers for technical support. 
 
Avoiding Failure 
 
There are many ways in which automated counts can fail, and it is important to take steps to minimize 
the risk of failure.  By “failure” we simply mean the loss of data.  When agencies have invested 
substantial resources and staff time to set up automated counters, the loss of data can be embarrassing 
and can threaten the viability of a count effort.  When data are being collected after an oil spill or other 
event for a natural resource damage assessment, the loss of data can be disastrous, as there is often 
only one opportunity to collect data on visitation impacts.  Failure risks include: 
 

 Weather:  It is important that automated counters be installed within waterproof containers 
and that field personnel consider all potential impacts to the counters due to ice, water, snow, 
heat/cold, and wind.  If surface flooding is a concern, the data logger should be elevated.  If data 
will be collected over the winter, potential impacts due to snowplows, snowbanks, and blowing 
snow should be considered.  In areas where high winds are frequent, the device should be 
installed on a post or tree that will not sway substantially (thereby moving the detection zone 
away from the trail) and where wind-blown vegetation will not impact the counts.    

 Vandalism or Theft:  Automated counters are expensive devices and may therefore be 
tantalizing targets for thieves or vandals, particularly when installed in remote locations where 
apprehension is unlikely.  This can be addressed by selecting counting devices that are 
inconspicuous, such as low-field magnetometers (which can be buried next to a road) or active 
infrared counters (which can be placed further from a trail than passive infrared counters).  
Devices can also be placed in lock boxes or camouflaged.  For example, the scope for a passive 
infrared counter can be placed in a hole drilled within a wooden post, and video cameras can be 
camouflaged within nesting boxes. Using heavy-duty screws or bolts when attaching counters to 
trees/posts can deter casual thieves at minimal cost.  Finally, field personnel should avoid 
inadvertently creating new spur trails when installing and checking devices, as these trails could 
lead visitors towards the counter equipment.    

 Meddling Humans:  In some cases, counters have been removed or tampered with not due to 
any ill-intent, but simply due to a lack of communication regarding their purpose.  An infrared 
counter in Iowa was destroyed by a police bomb squad, for example, after concerned citizens 
notified local authorities about a suspicious object (Schneider et al. 2005).  In a recent study at 
Lake Roosevelt National Recreation Area (Leggett et al. 2013a), a vehicle counter was simply 
removed by a park ranger and placed in storage.  In order to avoid such problems, contact 
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information for a team leader should be placed directly on all count devices and data loggers.  In 
addition, at developed locations, some type of bumpers or other obstacles should be placed on 
the ground next to posts used for data collection equipment so that sensors won’t be dislodged 
by over-zealous landscapers.  

 Meddling Animals:  Although not as troublesome as humans, animals can also disrupt data 
collection, particularly in remote park locations.  In Canada, infrared trail counters in remote 
locations have been destroyed by bears (Campbell 2006).34  On the Mount Vernon Trail in 
Virginia, infrared sensors have been impacted by spiders (building webs over the front of the 
scope) and ants (Sullivan 2013).   

 Power Failure:  A loss of battery power can prevent counters from gathering new data.  The 
possibility of a power failure can be minimized by carefully considering potential deviations from 
expected battery life due to cold weather, salt fog near the coast, higher-than expected counts, 
and data recording mode.  In addition, batteries can be exchanged more frequently than 
recommended by the manufacturer in order to minimize the potential for power failure.   

 
The best approach to minimizing the risk of failure is to have field personnel check the device (and 
download data) frequently.35  Where feasible, devices should be checked at least monthly, and weekly 
or biweekly checks are often preferred.  One approach to determining an appropriate interval for device 
checks is to consider the maximum length of time that data loss could be tolerated by a specific project, 
then select an interval that is equal to or shorter than that time period.  For example, with some long-
term monitoring projects, data losses of up to a month may be tolerable, and a monthly device check 
would prevent any failure from continuing longer than a month.  On the other hand, when gathering 
data immediately after an oil spill at an important location, any data loss that lasts longer than a day 
may be intolerable, so daily device checks might be appropriate.     
 
When frequent device checks are used, field personnel should approach the counter from a direction 
where they will not be detected by the device (and therefore potentially included in the visitor counts).  
This is particularly important at low-use sites, where frequent device checks could potentially constitute 
a non-trivial proportion of the counts.    
 
 
Hedging Against Failure by Incorporating In-Person Counts 
 
Another approach to minimizing the risk of failure is to schedule in-person “calibration” counts on 
randomly selected days, so that the in-person counts can serve two purposes.  First, as discussed in the 
next section, the in-person counts provide data that can be used to estimate the ratio of visits to 
automated counts.  Second, the in-person counts can be used without the automated count data to 
develop simple, design-based estimates of visitation.  That is, if a sufficient number of days are selected 
for in-person counts and if these days are randomly drawn, one can completely ignore the automated 

                                                           
34 Campbell (2006, pg. 321) notes that “Bears in particular were attracted to the units when new and would rub 

against them and occasionally chew on the housing.” 
35 The risk of failure can also be minimized if multiple devices are installed at each location to create redundancy. 

The backup device will provide data in the event that the primary device fails. It also provides a consistency check 
if both devices operate correctly throughout the study. 
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count data and extrapolate up from the in-person counts (see Leggett et al. 2013b for an example).  
While the ratio estimates of visitation are likely to be more precise, it is useful to have design-based 
estimates available in the event of an automated counter failure.   
 
In addition, in-person counts can potentially be used to provide additional information about visitor 
characteristics such as gender, age, and group size.  Visitors do not need to be stopped and interviewed 
to record this type of information, thus avoiding visitor burden.  However, gathering data on visitor 
characteristics will only be feasible at counter locations with low use, as additional data collection 
requirements can easily compromise the accuracy of in-person counts when visitors are continuously 
streaming past the count location.        
 
 
 
 

COUNTER CALIBRATION  

Accuracy rates claimed by automated counter manufacturers are invariably very close to 100 percent, 
but these rates typically reflect lab tests under near-ideal conditions.  Accuracy rates under field 
conditions will vary widely, depending on the installation of the counters, environmental conditions, and 
the characteristics of the visitors passing by the counters (e.g., speed, grouping, and location on path).  

As a result, some type of on-site calibration is required to translate counter tallies into visitation 
estimates.   Although it is rarely acknowledged, the statistical technique that is typically used to calibrate 
automated counters is some form of ratio estimation.  As discussed in Chapter 1, ratio estimation uses 
the relationship between the variable of interest (y) and an auxiliary variable (x) that is correlated with y 
in order to estimate population parameters.  One can think of y as the daily visitor count at a particular 
site, and x as the daily automated counter tally at the main entrance to the same site.  We would 
typically have automated counter data for the entire population of days and accurate visitor counts for 
only a sample of days.  We would use information about the relationship between x and y on the 
sampled days to estimate visitation for the entire time period.36   

 

 

 

 

This is much simpler than it may seem when the statistical jargon is stripped away.  Suppose we observe 
an average of 2.5 visitors per vehicle on sampled days during the summer.  Here, the number of daily 
visitors is y and the daily vehicle count is x.   To estimate total summer visitation, we would simply 

                                                           
36 The U.S. Forest Service’s National Visitor Use Monitoring (NVUM) process refers to x as a “proxy measure” and 
cites examples such as fee receipts, ticket sales (e.g., at a ski area), mandatory permits, and permanent traffic 
counts (English et al. 2002). 
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multiply the total summer vehicle count by 2.5.    The National Park Service has been using a somewhat 
more sophisticated variation of this approach for decades to estimate visitation at national park units. 

In many applications, calibration counts are implemented on days that are convenient rather than 
randomly selected.  This is probably adequate when the ratio of visitors to counts is relatively constant.  
Frequently, however, this ratio will fluctuate from day to day, varying with the weather, changes in 
visitor types, and other factors.  For example, infrared counters may be fairly accurate on slow days, 
when visitors tend to pass the counter one at a time, but they may substantially undercount visitors on 
busy weekend days when visitors are more likely to pass the counter in groups.37  In order to minimize 
bias, one would ideally draw a random sample of days and derive a calibration multiplier based on 
observations from that random sample.  This is equivalent to implementing a ratio estimation approach.  
Treating counter calibration as a ratio estimation problem has a further advantage in that incorporating 
a formal statistical framework allows one to calculate the standard error of the visitation estimate. 

When calibrating automated counters at park entrances, it often makes sense to focus on entire days as 
the time period of interest.  While some pedestrian and biker count studies use two-hour periods for 
calibration (Benz et al. 2013), this is only recommended when one can develop a sampling plan that 
ensures that the selected periods will be representative of the daylight hours.38  The problem is that the 
proportion of departing visitors varies systematically across the daylight hours.  The proportion is 
typically low early in the day and high late in the day.  As a result, a single time period may produce a 
biased estimate of the ratio of departing visitors to automated counts.  This is particularly true at 
beaches, where visitors generally trickle into the site throughout the day, then leave nearly all at once 
just before sunset.   

It is important to note that ratio estimation requires that x and y be correlated, but it does not require 
that the relationship between x and y be easily explained.  If we know that there is a close correlation 
between the number of vehicles that pass through the main entrance and the number of visitors that 
pass through the main entrance, the relationship does not need to be put in simplified terms such as 
“the number of visitors in every vehicle”; it is simply a ratio that summarizes the number of visitors 
observed per observed vehicle.  This ratio may represent more than “visitors in every vehicle” if, for 
example, there are pedestrians or bikers entering the park who are included in the visitor counts but not 
in the vehicle counts.  In fact, a park with many pedestrian visitors could feasibly have a visitor/vehicle 
ratio that is 6 or 7, which is obviously greater than the number of visitors that can fit in a typical vehicle. 

When a researcher has a reasonable expectation that the ratio of visitation to automated counts differs 
across time periods in a predictable manner, it may be possible to reduce the variance of the ratio 
estimator by drawing a stratified random sample of days, calculating stratum-specific ratio estimates, 
then combining these stratum-specific estimates to develop an overall estimate of visitation.  For 
example, one might expect the ratio of visitors to vehicles at a national seashore to be consistently 
larger on weekends than on weekdays, as weekdays may be dominated by individual visitors, while 
families may be more likely to visit on weekends.  In this case, one could potentially obtain a lower-

                                                           
37 In a San Diego study, Jones et al. (2010) found that infrared counters undercounted trail users by between 13 to 
48 percent, while Ozbay et al. (2010) found that passive infrared counters undercounted by between 5 and 28 
percent. 
38 See Pettebone et al. (2010) for an example where a fairly large sample size (24 one-hour periods) was used at 
each monitored location within Yosemite National Park.  Two-stage cluster sampling was applied:  six days were 
randomly selected at each location, then four hours were randomly selected for in-person counts on each of these 
six days.  
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variance estimate of overall visitation by stratifying by type of day and calculating separate ratio 
estimates for each day type.39 Note that this type of approach should only be considered if the ratio (as 
opposed to visitation) is expected to differ across time periods.   
 

Situations Where Regression Estimates May be Preferred 

Ratio estimates rely on a linear relationship between y and x that passes through the origin.  This means 
that when x is zero, one should expect y to be zero as well.  It certainly seems reasonable to expect this 
type of relationship between visitation at a park and automated counts at a main entrance: when no 
vehicles are counted at the main entrance, visitation has likely dropped to zero.  When a pedestrian 
counter registers zero daily counts at a pedestrian entrance, it is unlikely that visitors have passed by 
(assuming the equipment is in good operating condition).     
 
However, occasionally situations arise where the relationship between automated counts and visitation 
does not pass through the origin.  Suppose, for example, that a vehicle counter were stationed at the 
main entrance to a beach, but the beach also had a pedestrian entrance that was primarily accessed by 
local residents for daily walks or runs.  On days with poor weather, the vehicle counts at the main 
entrance may drop near zero, but visitors entering through the pedestrian entrance for daily exercise 
may be undeterred by weather.  As a result, some residual visitation would occur even when vehicle 
counts are close to zero, thus violating one of the conditions required for ratio estimation.   In this case, 
in would be preferable to estimate a regression of y on x (using an intercept to capture the residual 
visitation at the pedestrian entrance), then predict visitation using the estimated regression parameters 
and the daily vehicle counts.40   
 
 
 
 

DATA RECORDING AND TRANSMISSION 

Automated counters perform three distinct tasks: (1) generating a binary signal indicating that a 
pedestrian, bicycle, or vehicle has passed by, (2) recording data locally on the number and timing of 
these binary signals, and (3) transmitting the data to the analyst.  The manner in which the first task is 
accomplished varies widely across counter technologies and is described in detail in the next section.  
The second and third tasks are described below.   
 
 
Recording Data Locally 
 
The data recording task is fairly similar across automated count devices.  Binary signals are recorded 
locally using a data logger in one of two ways:  
 

                                                           
39 The standard error of the overall estimate would then equal the square root of the sum of the stratum-specific 
variances.   
40 Note that it isn’t necessarily helpful to add additional explanatory variables to this regression (e.g., precipitation, 
temperature, or type of day), as the impact of these factors should be captured through their impact on x.   
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1. Time-Stamped Data: With time-stamped data, the data logger simply generates a list of exact 
times (and dates) associated with every binary signal.  For example, the beginning of a time-
stamped count dataset may look like this: 

 
05-16-2015 06:23:14 
05-16-2015 06:28:32 
05-16-2015 06:30:03   
05-16-2015 07:13:45 
etc. 

  
This is the most flexible form of data logging, as the data can be grouped or analyzed in any 
manner desired after being collected.  However, since every single event (visitor or vehicle) is 
recorded as a separate line in the dataset, extremely busy sites can eventually consume the 
entire storage capacity of the data logger.   

 
 

2. Time-Binned Data:  With time-binned data, the binary signals are counted and only the total for 
each time bin is recorded by the data logger.  Common bin sizes are 15 minutes, 30 minutes, 1 
hour, or 1 day.  The beginning of an hourly time-binned dataset may look like this: 

 
05-16-2014 06:00:00 3 
05-16-2014 07:00:00 6 
05-16-2014 08:00:00 2 
05-16-2014 09:00:00 5 
etc. 

  
Time-binned data conserves memory, as multiple binary events are consolidated and stored as a 
single line in the dataset. The disadvantage is that once the data have been collected, the 
analyst does not have the option to examine the time pattern of visits within each bin.  For 
example, after collecting daily totals, one wouldn’t be able to later evaluate the pattern of visits 
within a typical day.   
 

 
Although both time-stamped and time-binned data can theoretically be recorded using all automated 
count technologies, manufacturers differ in the recording options that they offer with their data loggers.  
As a result, it is important that the data logging options be evaluated before selecting a product for a 
specific application.  When storage capacity is not a concern, time-stamped data are preferred, as they 
provide greater flexibility in analysis.  If time-binned data are collected, one must ensure that the 
beginning and end times for all in-person counts (used for calibration) coincide with the boundaries of 
the automated counter’s time bins. 
 
 
 
Transmitting Data for Analysis 
 
The method of data transmission can also vary across products, and it is important to assess options 
prior to product selection.  Data transmission options include: 
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1. Cable:  Nearly all devices offer an option to download data from the data logger to a laptop or 
smartphone using a dedicated cable connected directly to a USB port.   

2. Bluetooth Radio:  Some devices allow field personnel to extract data from the data logger using 
Bluetooth wireless radio.  A Bluetooth connection requires that the laptop or smartphone be 
within a few feet of the data logger.  Despite this restriction, the use of Bluetooth can greatly 
facilitate data transmission if the data logger is located high on a pole/tree or buried beneath 
the ground. 

3. Wireless Radio:  Data can be transmitted via wireless radio from the data logger to a nearby 
building over distances of up to approximately ½ mile.  The distance range depends on the 
number, size, and position of objects in the path between the radio transmitter and the 
receiver.  The advantage of wireless radio transmission is that it potentially allows for transfer of 
data directly to an indoor office building or visitor center, which greatly simplifies data 
collection.  

4. Cellular Network:  In locations where a cellular signal is available, a wireless modem can be 
attached to the data logger, and data can be transmitted to any internet-connected location via 
the cellular network.   

 

For most automated counters, the quantity of data generated in visitor count studies is relatively small, 
so that data transmission is generally fairly simple.  However, the quantity of data generated with video-
based counts has the potential to be extremely large, even in temporary applications.  As a result, video 
monitoring applications require careful consideration of data transmission options, as discussed in a 
later section. 
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AUTOMATED COUNTER TECHNOLOGIES 

 
Count technologies are continually evolving, and it is often difficult to keep track of the innovations and 
to assess the reliability of vendor claims regarding the accuracy and reliability of new devices.41  In this 
overview, we focus primarily on proven technologies that are commonly used by government agencies 
or other groups in outdoor, park-related count applications.  In addition, we focus primarily on devices 
that are relatively flexible in that they can be moved easily from one location to another and do not 
require a dedicated AC power source.  These criteria are especially important in NRDA applications in 
parks, where devices frequently need to be deployed immediately after an event, and access to a power 
source cannot be guaranteed. 42    
 
 

 
 

 
In the description of specific technologies below, we use symbols next to the title (car, bicycle, or 
pedestrian) to indicate common uses of the technology in park-related settings.  These symbols should 
not be construed as absolute restrictions.  For example, passive infrared counters are designated as 
bicycle and pedestrian counters, but these counters can also be used to count vehicles (U.S. DOT 2013).  
They are not designated as vehicle counters only because the use of passive infrared counters to tally 
vehicles in park-related applications appears to be very rare.    

                                                           
41 Several excellent reviews of automated count technologies exist, including: (1) a chapter devoted to bicycle and 

pedestrian counts in the U.S. Department of Transportation’s “Traffic Monitoring Guide” (U.S. DOT 2013, Chapter 
4), (2) a manual on pedestrian and bicycle count methods prepared for Los Angeles County and the Southern 
California Association of Governments (Kittelson and Associates 2013), (3) a review of bicycle count methods that 
includes numerous case studies from throughout the United States (Schneider et al. 2005), (4) a report on 
automated bicycle counters conducted for New Zealand (CDM Research 2013), (5) a United States Forest Service 
review of trail counters (Gasvoda 1999), (6) a review of pedestrian/bicycle count methods prepared for the 
Houston-Galveston Area Council by the Texas A&M Transportation Institute (Benz et al. 2013),41 (6) a United States 
Forest Service manual on methods for estimating use of wilderness areas (Watson et al. 2000), and (7) a Texas 
A&M Transportation Institute report summarizing commercially available trail counters for the National Park 
Service’s Social Science Branch (Turner et al. 2013).   
42 This section does not review GPS-enabled mobile devices, which can be used to trace visitor routes throughout a 
park visit.  These devices are typically used to describe visitor behavior rather than to obtain visitor counts.     
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While the technologies described below are designed to provide simple count data, many vendors offer 
products that can also provide direction-of-travel and speed.  These additional parameters are obtained 
by installing two counters at the same site (separated by a known distance), then connecting both 
counters to a single data logger with software that can translate the sequence of binary signals into data 
on direction and speed.  In addition, some vehicle counters can translate data from two adjacent 
counters into rudimentary vehicle classes (passenger vehicles, trucks, tractor trailers, or vehicles pulling 
trailers) by translating the sequence and timing of binary signals into axle configurations. 
 
 
 

Inductive Loop Counters    
 

Used for vehicle counts since the early 1960s, inductive loop counters are known to be extremely 
reliable and are widely used for permanent applications such as vehicle detection at traffic lights and 
drive-through windows.  Inductive loop counters have been used by the National Park Service for 
decades to develop vehicle counts at park entrances.   
  
With inductive loop counters, an alternating electrical current is passed through a wire loop, which is 
buried underneath the roadway.  When current passes through this wire loop, it creates a magnetic 
field.  Vehicles passing over the loop disturb the magnetic field, decreasing its inductance and increasing 
the frequency of the electrical current.  This change in frequency is detected by the counter and tallied 
as a vehicle.  
 

  
 
 
The disturbance of the magnetic field is greatest when the metal object has a large surface area, is 
positioned close to the loop, and is in the same plane as the loop (i.e., parallel with the roadway 
surface).  Thus, the undercarriage of a low-clearance vehicle such as a compact car will create a large 
disturbance, while high-clearance vehicles (such as trucks and sport utility vehicles) will create smaller 
disturbances, despite their larger mass.   The sensitivity of the counters can be increased for use in 
bicycle counting applications.43   
 

                                                           
43 Although some bicycles are constructed out of carbon fiber and have very little metal, even the carbon fiber 
models typically have at least some metal components (e.g., in their wheels).   



Chapter 3: Automated Counters 

77 
 

Ideally, the loop should be positioned directly underneath the path of the vehicles/bicycles, and it 
should be placed in a location where they are likely to be free-flowing rather than stopped.  It can either 
be installed prior to the final paving of a roadway/path, or slits can be cut in an existing roadway/path to 
accommodate the wire loop.  For maximum sensitivity, the loop should be installed no more than two 
inches beneath the final surface of the roadway or path. 
 
Inductive loop counters are not impacted by weather and lighting conditions and they are widely used 
throughout the United States.  Perhaps their primary disadvantage for vehicle counts is that they require 
cutting into the road surface, with the associated costs and disruption of traffic.  In addition, post-
installation disturbance of the road surface, such as the installation of utility lines or natural weathering 
and deterioration, can potentially disable these counters.   
 
 
 

Pneumatic Tube Counters    
 
Pneumatic tube counters are probably the most widely used traffic counting device in the world, and 
they have been in use for nearly a century (Lay 1999).44  They are simply hollow rubber tubes stretched 
taut across a roadway.  When a wheel passes over the tube, it creates an air pulse that is detected at 
one end of the tube by a transducer.   
  
 

  
 

Pneumatic tube counters are reliable, simple to install, and accurate.  The obvious disadvantage of 
pneumatic tube counters is that the tubes rest on top of the roadway surface, which makes them 
particularly vulnerable to mechanical disturbances due to street cleaning, snowplows, tire chains, theft, 
vandalism, or tampering.45  Pneumatic tube counters are also less accurate than inductive loop counters 

                                                           
44 In the early 1970s, while they were still in high school, Microsoft founders Bill Gates and Paul Allen (together 
with Paul Gilbert) created a company to interpret data from pneumatic tube vehicle counters (Traf-O-Data).  At the 
time, pneumatic tube counters recorded vehicles by punching holes in a role of paper.     
45 One colleague recalled using a hammer to trigger counts on a pneumatic tube counter installed near his 

childhood home.  Hornback and Eagles (1999, pg. 32) show a photograph of an alligator crawling over a pneumatic 
tube counter in Jean Lafitte National Historical Park and Reserve. 
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in high-traffic situations, where vehicles are moving slowly and stopping frequently.  Nonetheless, 
pneumatic tube counters can be extremely reliable in temporary applications in areas where traffic 
flows relatively freely.    
 
Although pneumatic tubes are frequently used to count vehicles, they can also be used to count bikers.  
In Portland, Oregon, for example, pneumatic tubes count bikers crossing Hawthorne Bridge and 
wirelessly transmit data to a large public display that shows a daily running total.  Pneumatic tubes were 
also used to count bikers in a recent study conducted on the Outer Banks of North Carolina (Schneider 
et al. 2005).   Because bikers can see the tubes as they approach them, it is important that the tubes 
span the entire bike path so that they can’t be avoided.  Nails should never be used to attach the tubes 
to paved surfaces, as they may eventually work loose and puncture bicycle tires.   Because pneumatic 
counters simply record air pulses, they cannot detect two bicycles riding exactly side by side on a path.       
 

 
 
Geomagnetic Counters   
 
Geomagnetic counters, or magnetometers, operate by detecting changes induced by passing vehicles in 
the strength of the background magnetic field.  When a vehicle (or other metal object) passes near the 
sensor, the ferrous materials in the vehicle chassis (iron, steel, nickel, cobalt, etc.) induce changes in the 
field that are detected by the sensor.46   
 

  
 
 
Historically, geomagnetic counters were installed underneath the roadway surface.  Recently, however, 
low-field geomagnetic counters have been developed which can be placed next to the roadway (often 
buried in a waterproof container) and are approximately the size of a small paperback book.  The great 
advantage of these counters is that they require absolutely no disturbance to the roadway surface.  This 
is particularly useful for temporary applications where the disruption and costs associated with cutting 
into the roadway are difficult to justify.  The magnetic field disruptions caused by vehicles decline 
exponentially with distance, however, so the counter does need to be adjacent to the vehicle lane that 
will be monitored.  Low-field geomagnetic counters were used to count vehicles at parks after the Cosco 

                                                           
46 The presence of parked vehicles along the road will not lead to count errors, as the counters automatically 

adjust to the new background magnetic field.  
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Busan Oil Spill in San Francisco Bay (Leggett et al. 2010), and they were used to determine the temporal 
distribution of visitation in a recent study at Lake Roosevelt National Recreation Area (Leggett et al. 
2013a). 
 
Low-field geomagnetic counters can be calibrated to adjust the detection distance, up to a maximum of 
approximately 20 feet.  For example, with a two-lane roadway, the counters can be adjusted to record 
vehicles traveling in either direction or only vehicles traveling in the lane that is closest to the counter.  
When the roadway does not have a clearly defined center line (as is likely to be the case in many parks), 
the counter should be calibrated to count vehicles traveling in both directions.  
 
Recently low-field geomagnetic counters have been developed that can be calibrated to detect bicycles 
and/or OHVs, although applications appear to be rare thus far.47  This is a potentially promising 
development for monitoring mountain biking, as pneumatic tubes and inductive loops are not effective 
on unpaved surfaces.    
 
 
 
 

Passive Infrared Counters    
 
Passive infrared counters take advantage of the fact that human beings, with an internal temperature of 
98.6 degrees, are typically warmer than their surroundings.  Warm objects emit infrared radiation, so 
visitors can be tallied by continuously monitoring background radiation levels and registering counts 
when changes are observed.  Typically, the radiation levels are monitored within several observation 
“zones,” and counts are registered when sequential (rather than simultaneous) changes occur in these 
zones (Gasvoda 1999).  Sequential changes indicate that a warm object is passing in front of the device, 
while simultaneous changes indicate that an environmental change has occurred, such as the sun 
suddenly coming out from behind a dark cloud. 
 
The counters are mounted on a post, sign, pole, or tree at a height of approximately three feet at the 
side of the trail.  Three feet is an ideal height because it allows the counter to monitor radiation from 
the visitor’s torso area.  A small scope points directly across the trail to monitor infrared radiation.  In 
contrast to active infrared counters (discussed below), passive infrared counters do not require a 
receiving unit on the opposite side of the trail, as they passively monitor infrared radiation rather than 
actively emitting it.   

                                                           
47 Rettie (2012) reports that geomagnetic counters are used to count mountain bikers in Canadian parks.  
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Passive infrared counters are popular for trail-counting applications because they are inexpensive, 
portable, simple-to-install, and consume very little power.48  They are also fairly easy to hide, which 
reduces tampering/vandalism risks. For example, in an urban setting, a counter can be housed entirely 
within a faux electrical box, with the scope pointing out one of the circular knock-out plugs in the box. In 
a rural setting, the counter can be attached to the back of a wooden post, with a hole drilled through 
the post so that the scope can point across the trail.  
 
Passive infrared counters provide total visitor counts on a trail; they count both bikers and pedestrians, 
but they do not distinguish between the two.  If separate biker and pedestrian counts are required, then 
an infrared counter can be combined with a bicycle-only counter (e.g., an inductive loop, pneumatic 
tube, or geomagnetic counter) to indirectly derive separate biker and pedestrian counts for a given 
location.   
 
Despite their advantages, a number of count issues have been identified with passive infrared counters.  
First, because the counters are designed to detect any warm, moving object, they cannot distinguish 
between human beings and large mammals such as deer.  Second, the counters typically under-count 
when visitors travel in tight groups (or side by side), where multiple infrared signatures merge together, 
appearing to the counter like a single individual.49  Third, low bushes or branches close to the trail can 
cause false positives if they become warmed by sunlight, then move back and forth due to strong winds.  
Finally, miscounts may result if direct sunlight strikes the counter lens (Turner et al. 2013).   
 
Overall, the ideal condition for infrared counters is a narrow trail where visitors pass the counter one at 
a time, as the detection range for most counters is approximately 10 feet.  When the targeted count 
location does not meet these conditions, researchers can either find a nearby section of trail that does, 
or they can create a narrow segment of trail by installing temporary obstacles such as fences, logs, or 
boulders.   
 

 
 
 

                                                           
48 Passive infrared counters are used to monitor bicycles and pedestrians at numerous locations on shared paths in 
Licking County, Ohio (Schneider et al. 2005) and on nature trails in the Porland, Oregon area (Figliozzi 2014).  They 
were also used to count bikers and pedestrians at several locations in Berkeley and Oakland, California after the 
Cosco Busan Oil Spill (Leggett et al. 2010).   
49 Counters are programmed to minimize double counting by requiring a time delay between counts.  If the time 
delay is set to one second and two visitors are only ½ second apart, only one visitor will be counted.   
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Active Infrared Counters   
 
Active infrared counters (also called beam-break counters) operate by emitting a pulsed, low-energy 
infrared beam across a trail or path.  A receiver on the opposite side of the path monitors the beam, and 
interruptions by pedestrians/bikers/OHVs are translated into counts.50  The beam is pulsed in order to 
conserve power.  Active infrared counters differ from passive infrared counters in that they emit 
infrared radiation rather than simply monitoring the infrared radiation emanating from visitors on the 
path.51   
 
 

  
 
Similar to passive infrared counters, active infrared counters are installed at the side of a trail on a post, 
sign, pole, or tree at a height of approximately three feet.  The transmitting and receiving units can be 
placed fairly far apart (two popular manufacturers claim ranges of at least 70 feet), which provides two 
significant advantages.  First, the units can be placed well away from the monitored trail, so that they 
will be nearly invisible to visitors and less likely to be vandalized or stolen.  Second, the units can be used 
to monitor entrances that are much wider than a typical trail.  At some beaches, for example, the 
entrance to the beach from the parking lot or adjacent roadway is fairly wide.  One obvious 
disadvantage associated with a longer range is a greater likelihood that objects or animals could 
interrupt the beam and be registered as counts.   
 
Many of the count difficulties described above for passive infrared counters also apply to active infrared 
counters.  Specifically, because active infrared counters translate a trail cross-section into a simple 
binary signal (presence or absence of an object), they are not able to accurately count tightly-spaced 
groups of visitors or visitors walking/biking side by side.52  Young children will not be counted if they are 
not tall enough to interrupt the infrared beam.  In addition, any creature or object that interrupts the 
infrared beam may be incorrectly tallied, including animals, leaves, or heavy fog/snow.53  To ensure an 
uninterrupted beam, both the transmitter and the receiver must be kept clear of nesting insects and 

                                                           
50 In an alternative design, the infrared beam is reflected back to the emitter (i.e., it crosses the path twice), where 
interruptions are monitored and registered as counts. This design requires careful attention to the alignment of 
the emitter and the reflector.  In addition, the reflector is difficult to conceal.   
51 Muhar et al. (2002) used active infrared counters to count visitors in Danube Floodplains national park near 
Vienna, Austria.   
52 The accuracy of active infrared counters can be enhanced by positioning the counter at a 45 degree angle to the 
path (rather than perpendicular to the path).  This allows the counter to “see” a gap between individuals who are 
walking side by side (Jones et al. 2010).   
53 Vaske et al. (2009) also report spurious counts due to cattle and a broken branch swaying back and forth in front 
of an infrared counter.    
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heavy coatings of dust/debris. Finally, miscounts can result when direct sunlight strikes the receiving 
lens (Vaske et al. 2009). 
 
Active infrared counters require more setup time than passive infrared counters, as two different units 
need to be installed (one on either side of the trail).  In addition, the existence of two devices may 
increase the failure rate, as both devices must be in operating condition for counts to be obtained.  
Nonetheless, at least one study comparing the two counters has found active infrared counters to be 
more accurate (Gasvoda 1999).  Active infrared counters have recently been used to estimate visitor use 
of trails in Boulder, Colorado (Vaske et al. 2009) and to study trail use in Rocky Mountain (Bates et al. 
2006) and Yosemite (Pettebone et al. 2010) national parks.   

 
 
 

Pressure Counters   
 
Pressure counters are designed to count visitors by detecting the weight of pedestrians or bikers on a 
path.  Piezoelectric material is installed underneath the path, and pressure from a footstep or bicycle 
tire causes the material to generate an electrical signal, which is recorded as a count.54  Pressure 
counters are frequently used in Western Europe to detect the presence of pedestrians waiting to cross 
the street at an intersection.  Pressure sensors are manufactured as either piezoelectric mats or 
piezoelectric strips.   
 
Piezoelectric mats can be used to detect bikers and pedestrians.  While these mats are difficult to install 
on a paved path or rocky trail, they are well suited to dirt trails, where they can be installed easily and 
fairly well concealed just beneath the surface.  The path or walkway must channel pedestrians towards 
the mat for it to be effective, as the mat will only detect individuals who step directly on its surface.  The 
sensor is programmed to use time delays to prevent double-counting of pedestrians who step on the 
mat more than once. However, similar to passive infrared counters, pressure counters may undercount 
visitors traveling in groups:  they have difficulty distinguishing multiple visitors walking side by side or 
close behind one another. Furthermore, pressure-sensitive mats are not suitable on steep slopes, in 
areas where the ground will freeze, or on trail sections likely to be disturbed by surface runoff.   
 

  
 
 
Piezoelectric strips are thin strips of material embedded in the pavement that are used to detect 
bicycles.  In order to avoid counting pedestrians, a bicycle is tallied by these counters only if two electric 
signals (i.e., from two wheels) are detected within a certain period of time.   The Iowa Department of 

                                                           
54 Piezoelectric materials are capable of converting pressure into an electrical charge (piezo is Greek for “push”). 
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Transportation tested numerous methods for counting bicycles on shared-used paths (passive and 
active infrared, video, pneumatic tubes) and found piezoelectric strips to be the most accurate 
(Schneider et al. 2005).   
 
Although applications are rare, pressure counters can also be built into wooden elements of trails, such 
as staircases, boardwalks, or bridges.  The bottom step of a staircase is a promising location, as studies 
show that visitors almost always step on the bottom step of a staircase (Cessford et al. 2002). 
 
 
 
 

Video-Based Counts    
 
Video-based counts represent a significant departure from other automated count methodologies in 
that they involve recorded images rather than simple counts of binary signals from an electronic device.  
This is both a help and a hindrance.  It is helpful in that it opens up entirely new opportunities for 
analysis.  It is a hindrance in that the associated data storage and power requirements impose 
technological hurdles that are sometimes difficult to surmount in a field study at a park.  However, the 
potential analytical advantages associated with recorded footage warrant that video-based counts at 
least be considered when selecting an automated count methodology for a visitation study.    
 
With video-based counts, a camera generates a series of images, and these images are either recorded 
locally or streamed to a remote location.  A remote observer then views and processes the recorded 
video, translating the video footage into user counts.  Although the remote observer is typically a human 
being, there are emerging technologies that apply pixel-processing algorithms to automate the process 
of translating video footage into visitor counts.  However, experience with these algorithms in park 
settings is rather limited, processing costs are high, and accuracy appears to be highly context 
dependent (CDM Research 2013).  In addition, in order to avoid occlusion effects, the algorithms 
typically require overhead mounting of cameras, which is often challenging.  As a result, this discussion 
of video-based counts assumes that human observers will be used to process video data.55     
 

  
 
Video-based counts have a number of significant advantages over on-site counts, including: 
 

                                                           
55 In that sense, video-based counts are not “automated” counts at all, but the application of a technology that 
facilitates in-person counts. 
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1. Personnel Costs:  Video-based counts provide opportunities for reducing or eliminating a variety 
of personnel costs typically associated with periodic on-site counts in the field.  Perhaps most 
importantly, video can be viewed at accelerated speeds, so that slow periods with few visitors 
do not consume personnel hours.56  In addition, there is no longer a safety concern with 
personnel stationed at remote sites for long periods, so the need for a “buddy system” is 
eliminated (i.e., one person can conduct the counts rather than two).  Finally, if the system has a 
dedicated power source and the integrity of the video stream can be monitored remotely, travel 
costs associated with periodic trips to the site can be eliminated.57  
 

2. Personnel Safety:  Even when a buddy system is in place, on-site counts at remote locations 
involve a variety of safety risks, and many of those risks can be eliminated through video-based 
counts.  With on-site counts, there are risks associated with encountering dangerous animals 
(bears, snakes, mountain lions, etc.), severe weather (lightening, extreme heat or cold), or in 
some cases, threatening humans.  There are also risks associated with driving or walking to 
remote locations, particularly when traveling in the dark before or after a shift.  With the 
exception of relatively brief trips required to set up and check equipment, these risks are 
eliminated when video-based counts are used.  
 

3. Opportunities for Quality Control:  The quality control possibilities with video-based counts are 
tremendous.  With recorded video footage, separate counts can be completed by two different 
individuals and any observed discrepancies can be resolved.58  In addition, at sites where visitor 
counts are challenging (e.g., busy sites with many visitors arriving and departing 
simultaneously), video provides opportunities for more careful counts, as video footage can be 
paused or viewed at speeds that are slower than real time.59  Finally, recorded footage provides 
an opportunity for altering the counting protocols (and repeating the counts from the 
beginning) if unanticipated situations are observed partway through a count study.   

 
Storing Large Quantities of Video Data 
 
The core challenge underlying video data collection is that a very large amount of data must be stored.  
The data may be stored locally at a remote location, but this requires substantial technical expertise, as 
the camera must send data to a digital video recorder (DVR), which in turn must be housed in a 
weather-proof container with climate control to prevent impacts from high or low temperatures.60   
 
 

                                                           
56 In our experience, video at sites without many visitors can be viewed at 4x real time with very little loss of 
accuracy.   
57 With many cameras, a remote user can even adjust the camera settings, zooming in or out, or rotating the 
camera to change the view.   
58 Although two independent counts can also be obtained during on-site count studies, discrepancies are difficult 
to address, as they rely on the memory of field personnel. 
59 In a study conducted at Danube Floodplains National Park in Austria, Arnberger et al. (2005) found that video-
based counts were approximately 20 percent higher than in-person counts during high-use time periods (defined 
as time periods with more than 120 visitors per hour).  When all time periods were combined, video-based counts 
were within 4% of in-person counts.  
60 This type of solution was implemented on a remote hiking trail in Acadia National Park by Jeff Marion of the U.S. 
Geological Survey (Marion et al. 2011).  



Chapter 3: Automated Counters 

85 
 

Alternatively, the data can be streamed to a DVR housed within a nearby building.  This can be 
accomplished using a wireless radio transmitter (along with a receiver in the building) if the distance is 
fairly short (e.g., approximately ½ mile or less).61  When there are no convenient buildings nearby, a 
modem can be used to transmit data to the cellular network, and from the cellular network to any 
internet-connected office location.  This option is clearly only available in locations that have a 
dependable wireless phone signal (see Leggett et al. 2013b for an example).  
 

  
 
 
Addressing Power Requirements 
 
The need to store or stream large quantities of data imposes significant power requirements on video 
applications.  As a result, the systems must either be connected directly to an AC power source, or 
heavy, marine cell batteries need to be used and exchanged every couple of weeks.  While solar setups 
are available, they are fairly expensive and they still require a buffer battery for days with limited 
sunlight.    
 
 
Limiting the Quantity of Data Collected 
 
Given the technical challenges associated with streaming and recording video data, it is very important 
to limit the quantity of video data collected.  This can be accomplished in a variety of ways, including: 
 

1. Programming the camera to shut down at night. 

2. Reducing the number of frames that are recorded via time-lapse video.  Arnberger et al. (2005) 
recorded only 0.6 frames per second in a long-term monitoring study in Austria, while Leggett et 
al. (2013b) used 7.0 frames per second in a short-term study at an urban park in New Jersey.   

3. Recording a systematic sample of time periods.  For example, the camera could be programmed 
to record five minutes of footage every hour.  

4. Reducing the resolution of the image. 

 
Another option for limiting the amount of data collected (and conserving power) is to use motion-
sensitive video cameras.62  These cameras only turn on and record video footage when motion is 

                                                           
61 It would be important to test the range of the radio transmitter at the field location under a variety of weather 
conditions before beginning the study.   
62 Motion-sensitive video cameras were used to monitor trail users near Stuttgart, Germany (Mutz et al. 2002). 
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observed using, for example, a passive infrared monitor.  They are frequently used by wildlife biologists 
and hunters to observe animal behavior.  With motion-sensitive video cameras, it is important that 
there be only a minimal delay between the motion signal and the recording of video footage so that 
visitors who are running or biking are not missed.   
 
Privacy  
 
It is crucial that potential privacy concerns be addressed when using video cameras to monitor 
visitation.  People visit national parks in part to get away from crowds and to experience nature; seeing 
a video camera while walking on a remote trail could significantly reduce the value of this experience.  
As a result, when necessary for a count study, cameras should be deployed discreetly, and they should 
never be located in areas where visitors would have a reasonable expectation of privacy, such as at 
campsites or remote swimming beaches.  In order to reduce the likelihood that specific individuals will 
be identified, the resolution of the video recording should be low and personnel who live in the local 
area should not be hired to analyze the footage.  
 
Selecting a Location 
 
In contrast to other types of automated counters, video cameras should not be installed so that the field 
of view is perpendicular to the path.  With video-based counts, it is preferable to point the camera 
parallel to the direction of travel, thereby maximizing the amount of time that each visitor remains in 
the field of view.  This facilitates the reduction of video data when groups of visitors approach the 
camera, as the analyst can carefully observe and interpret several images of the group as they approach 
and pass by the camera.  With any single image one or more members of the group may be temporarily 
hidden from view, but all members of the group can typically be counted using multiple images.  In 
addition, fast-moving visitors (e.g., mountain bikers) will be less likely to be missed if they remain in the 
field of view for several seconds.  
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Exhibit 3.1: Summary of Automated Counter Technologies 
 

Type of Counter Detection Capability Overview 

Inductive loop 
   Widely used for long-term vehicle or bicycle counts, but typically 

requires pavement cuts; bicycle counter available that can be 
taped to a paved surface. 

Pneumatic tube 
   Widely used for short-term vehicle or bicycle counts; vulnerable 

in long-term applications because installed on top of paved 
surface. 

Geomagnetic  
   Not widely used, but portable and convenient for short- to 

medium-term counts; very well hidden.  Bicycle counts only 
possible at close range. 

Passive infrared    
Widely used for combined pedestrian and bicycle counts.  
Inexpensive, portable, and simple to install.  Range of ~10 feet or 
less. May undercount visitors due to occlusion. 

Active infrared    
Widely used for combined pedestrian and biker counts.  
Inexpensive, portable, and simple to install.  Range of up to ~70 
feet.  May undercount visitors due to occlusion. 

Pressure     
Not widely used, but potentially useful on unpaved trails where 
posts/trees unavailable for infrared counters.  Must be installed 
underneath the trail. 

Video 
   

Automated count algorithms still in development and not widely 
tested.  Potentially useful in lieu of short-term, in-person counts.  
Excellent quality control opportunities. 
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SUMMARY AND RECOMMENDATIONS 

Despite the large number of available count technologies, the options narrow significantly when one 
focuses on selecting a well-tested and widely applied technology for a specific visitor count setting.  
Below, we provide summary recommendations for specific count settings.      
 
Recommendations for Unpaved Trails 
 
In rugged trail settings, infrared counters are the preferred technology.  When the trail is narrow and 
when the counter can be camouflaged, a simple and inexpensive passive infrared counter is likely to be 
sufficient.  When the trail is wide or the counter is likely to be conspicuous, an active infrared counter is 
preferable, as it has a significantly longer range than a passive infrared counter, and it can therefore 
monitor a wider trail and be installed further away from the trail edge.   
 
Both types of infrared counters tally all trail users and do not provide separate counts of bikers.  If 
separate biker counts are required on an unpaved trail (e.g., mountain bikers), a small, geomagnetic 
counter can be buried in the ground next to the trail.  Geomagnetic counters can detect bikers within 
about one meter, so they must be deployed on narrow sections of trail.   
 
A pressure counter can also be installed on unpaved trails and may be an attractive option in areas 
without trees or posts, where it is difficult to find an inconspicuous location to mount an infrared 
counter.  However, a relatively flat, narrow trail section is required for a standard, mat-style pressure 
counter, and approximately six inches of sand/soil is required on the trail so that the mat can be buried.    
 
 
Recommendations for Paved Trails  
 
With paved walking trails or bike paths, infrared counters are again the preferred technology when the 
goal is to count all trail users.  As with hiking trails, a passive infrared counter would be sufficient for 
narrow trails (e.g., less than six feet wide), but an active infrared counter is preferable for wider trails 
and in areas where concealing the counter is an important priority.  If separate biker counts are 
required, pneumatic tubes are the preferred technology for temporary applications on paved bike 
paths.63  While inductive loops are widely used by municipalities throughout the U.S. to count bikers on 
paved paths, pavement cuts would not be recommended for a temporary count study.  At least one 
manufacturer now offers an inductive loop that adheres to the surface of a paved path (eliminating the 
need to cut into it), although it is not clear that this technology has been widely tested in a variety of 
environments.        
 
 
Recommendations for Entrance Roads with Dedicated Vehicle Use 
  
Inductive loops are the gold standard for vehicle counts, but they require pavement cuts and are 
therefore not likely to be viable options for a temporary count study implemented in support of a 

                                                           
63 Jones et al. (2010) generate separate pedestrian and bicycle counts by installing two active infrared counters at a 
single location.  One of the counters was calibrated to record all trail users, while the other counter was calibrated 
to record only slow-moving trail users (i.e., non-bikers). 
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natural resource damage assessment.64 Pneumatic tube counters, which have been widely used for 
many decades, are the preferred technology for temporary counts.  However, if the study requires more 
than a few weeks of vehicle counts, or if vandalism is a concern, an alternative technology should be 
considered, as pneumatic tubes cannot be concealed and they break down over time.  In these 
situations, a magnetometer would be preferred, as it can simply be buried in the ground at the side of 
the road.   
 
  
Recommendations for Entrance Roads with Shared Use 
 
When pedestrians, bikers, and vehicles share an entrance road without a separate shoulder that is 
exclusively dedicated to non-motorized traffic, it is extremely difficult to obtain separate 
biker/pedestrian counts using automated counters.   Many types of counters would occasionally include 
vehicles in the counts if installed at the side of the road.  The number of (false) vehicle counts would 
depend on factors that vary with the type of count technology applied, such as the size of the vehicles 
and the quantity of ferrous materials (geomagnetic counters), whether or not vehicles tend to drive near 
the edge of the road (pneumatic tubes stretched across a shoulder to count bikers), and heat signatures 
(infrared counters).   Pneumatic tube or inductive loop counters can potentially be used to obtain 
separate biker counts if bikers ride primarily on the shoulder and vehicles stay primarily in the driving 
lanes.  Unfortunately, infrared counters are not viable options in this setting, so pedestrians would not 
be counted.  Due to the difficulties involved in obtaining automated counts, we recommend in-person 
counts or video-based counts at entrance roads that have a substantial amount of non-motorized 
traffic.65   
 
 
Video-Based Counts 
 
With a variety of complexities related to data storage, data transmission, and power, video-based 
counts are not an “out-of-the-box” solution for moderate- or long-term visitor count studies.  In contrast 
to most of the automated counters described in this chapter, engineering expertise is required (either 
in-house or through a firm that specializes in video applications) to set up and test video equipment for 
moderate- or long-term count studies. 
 
However, for short-term count studies, video-based counts offer opportunities for leveraging field staff 
without requiring engineering expertise.  For example, if a portable video camera is deployed at a site 
for only a single day, data storage and power can be provided by the camera itself, which greatly 
simplifies setup.  Field personnel can travel to a count location in the morning, set up the camera, then 
retrieve the camera at the end of the day to extract video footage.  While this would clearly be 
inefficient if used at a single location, it could be effective when monitoring many locations, as it allows 
a single individual to deploy cameras and obtain video footage at multiple site entrances 

                                                           
64 Nearly all park units already have inductive loop counters installed at major entrances.  These counters can be 
used to obtain ratio estimates of visitation, but they typically are not linked to data loggers.  As a result, field 
personnel would need to drive to the entrance and read the counters at the same time every day if daily counts 
are desired.   
65 Note that if biker/pedestrian traffic is highly correlated with vehicle traffic, then an automated vehicle counter 
(e.g., pneumatic tube or geomagnetic counter) combined with occasional in-person counts that incorporate all 
visitors may be sufficient to implement a ratio estimation approach.   
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simultaneously.  Thus, for example, a standard in-person count study could be implemented with video 
footage, allowing for potential reductions in personnel costs and greatly expanding opportunities for 
quality control after the fact.66 
 
Because video-based counts rely on ambient light to generate images, they cannot provide night-time 
counts of visitation without artificial illumination.  While this is probably not a concern at most parks, 
night visitation may be significant at sites that offer recreational fishing, star-gazing, beach bonfires, or 
other nighttime activities.  
 
  
 
 

                                                           
66 The city of Davis, California has used video cameras for this type of short-term monitoring in bicycle studies 
(Schneider et al. 2005).   
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CHAPTER 4 

 

 

OFF-SITE SURVEYS  

 

 

At parks with small entrances, on-site visitor counts may not be cost effective.  Consider a remote 
mountainous park with ten different trailheads providing access to hikers.  If only a handful of visitors 
use each trailhead on a typical day, stationing field personnel at the trailheads to conduct on-site counts 
would clearly be an inefficient use of resources.  In such cases, if visitors are thought to come primarily 
from the local area, one can estimate trips through an off-site survey of the general population.  That is, 
the population living near the park can be sampled and a survey can be administered to the sampled 
residents to inquire about the number of trips taken to the park within a given time period.  This chapter 
describes the use of such off-site surveys to develop trip estimates.    

After struggling with the logistical details and statistical sampling complexities of an on-site count effort, 
using an off-site survey to develop visitation estimates can seem deceptively simple:  simply ask a 
sample of local residents about the number of trips to the site, then extrapolate to the population.  
However, there is an enormous difference between an inexpensive, casually-designed off-site survey 
and a professionally implemented off-site survey designed to collect high quality data with minimal 
nonresponse or recall bias.  This chapter will describe what is required for a high quality off-site survey 
effort.   

The chapter begins by discussing the types of situations where an off-site survey is likely to be useful.  
This discussion is followed by a brief comparison of the sampling contexts for on-site counts versus off-
site surveys.  Next, a detailed description of the steps required to implement an off-site survey is 
provided.  The chapter concludes with a discussion of several challenges specific to off-site surveys:   
nonresponse, recall error, and cell-only households.    
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CONDITIONS FAVORING OFF-SITE SURVEYS  

When estimating park visitation, there is at first almost always a bias towards implementing on-site 
counts.  This may have something to do with the deceptively simple name.  After all, what can be easier 
than simply “counting” visitors as they enter or leave a site?  The approach is easy to explain to 
management and to the public; everyone thinks that they understand the basic principles of on-site 
visitor counts.   

However, as we learned in previous chapters, on-site counts can become maddeningly complex when 
there are a large number of entrances to the site, forcing researchers to conserve resources by 
randomly selecting time periods and entrances for counts.  This not only complicates implementation 
logistics, but it also leads to unwieldy variance formulas and less precise final estimates of visitation.    

In these situations, an off-site survey methodology may be preferable to on-site counts, provided that 
the following two conditions are satisfied: 

Condition #1: A large proportion of the park’s visitors live in the local area. 

Condition #2: A large proportion of local area residents visit the park.     

The first condition is necessary to ensure that the off-site survey effort has the potential to capture a 
reasonably large proportion of total visitation.  The second condition is necessary to ensure that 
visitation by local residents can be investigated without an unreasonably large sample size. 

In some situations, a large fraction of local residents visit the park (thus satisfying condition #2), but a 
large proportion of the park visitors live outside of the local area (thus violating condition #1).  This is 
likely to occur at many large, well-known parks that attract visitors from across the country.  For 
example, many Montana residents have visited Glacier National Park, but Montana residents are only a 
small fraction of Glacier’s overall visitor population.  Thus, while it would be extremely easy to find 
Montana residents who have visited the park, these residents would represent only a small fraction of 
the park’s overall visitation.67   

In other situations, a large proportion of park visitors live in the local area (thus satisfying condition #1), 
but only a very small fraction of local area residents visit the park (thus violating condition #2).  This 
might be the case for a relatively small park located within a large metropolitan area.  For example, Fort 
Funston, which is part of Golden Gate National Recreation Area, is a small park in San Francisco that is 
used primarily by local residents for dog walking.  While an off-site survey of San Francisco residents has 
the potential to characterize the lion’s share of visitation at Fort Funston, finding San Francisco residents 
who regularly visit Fort Funston would be like searching for a needle in a haystack.  Without an 
enormous sample size (required to ensure that a reasonable number of sampled residents actually visit 
Fort Funston), the resulting visitation estimate would have a very large variance. 

                                                           
67 This fraction can potentially be estimated through on-site interviews.  This is done in the National Marine 
Fisheries Service’s (NMFS) Marine Recreational Information Program (MRIP) survey, where the percentage of 
marine fishing trips missed by a telephone survey of coastal county residents is estimated using data from on-site 
interviews at fishing sites. 
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There is clearly a close relationship between conditions #1 and #2 and how one chooses to define the 
“local area.”  Imagine that one could cordon off the local area with an extremely long rope.  As the size 
of the area within the cordon increases, the proportion of visitors captured must increase (allowing us to 
satisfy condition #1).  However, the proportion of residents within the cordon who visit the park will 
generally decrease when the area is enlarged (eventually leading to a violation of condition #2).  
Defining the local area therefore requires careful thought and park-specific knowledge about the visitor 
population.  

 

Example 4.1: Conditions Favoring an Off-Site Survey 

The hypothetical Lakes National Park is located in the center of Bucolic County, and we would like to use 
an off-site survey of Bucolic County residents to estimate the number of trips taken to the park last year.   
Suppose every Bucolic County resident (and no one else) always wears a “B” sweatshirt.  Suppose also 
that everyone who has visited Lakes National Park within the last year (and no one else) always wears a 
“Lakes” baseball cap.   

Condition #1 is equivalent to stating that if one stood at the main entrance to the park and observed 
visitors entering, a large proportion would be wearing B sweatshirts.  Condition #2 is equivalent to 
stating that if one knocked on the doors of randomly selected households in Bucolic County, the 
proportion of those responding to the knocks wearing a Lakes hat would be large. 
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THE SAMPLING CONTEXT FOR OFF-SITE SURVEYS  

The statistical sampling context for off-site surveys is completely different from the sampling context for 
on-site counts.  With on-site counts, the sampling units for a given location are time periods (e.g., days 
or shifts) and the population is the entire collection of time periods that comprise the period of interest 
(e.g., a month, season, or year).68  With off-site surveys, the sampling units are adults or households 
living within a particular local area and the population is the collection of all adults or households in that 
area.  

One way to conceptualize this difference is to imagine using hand-held tally counters or “clickers” to 
count visitors during a single season.  With on-site entrance counts, field personnel would hold the 
clickers and use them to tally, for example, all visitors exiting the park on a random sample of days.  The 
clicker total is recorded at the end of every sampled day and incorporates trips taken on a single day by 
different individuals.  In contrast, with off-site surveys, the clickers are held by a random sample of 
potential visitors, and every potential visitor in that sample uses a clicker to tally his or her trips to the 
park during the season.  The clicker total is recorded at the end of the season and incorporates trips 
taken by a single individual on different days.    

 

Example 4.2: Sampling Context for Off-Site Surveys 

The distinction between the two sampling contexts is easy to see with a stylized example.  Suppose the 
goal is to estimate visitation at a particular park for the month of June.  The park is unusual in that there 
are only 10 people who live nearby and could potentially visit in June.  The trips actually taken by these 
10 individuals are depicted by the 47 checkmarks in the table below.  Each checkmark represents one 
trip to the park taken by one individual.  The column represents the date of the trip, while the row 
represents the individual who took the trip.   

 

 
With on-site counts, we would draw a random sample of June days (i.e., a sample of columns), use field 
personnel to count total visits on each day (i.e., the totals at the bottom of each column), then 

                                                           
68 At sites with many entrances, these entrances are often randomly sampled in addition to sampling time periods.  
In these cases, the sampling units are time period/location pairs.     

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 TOTAL

Bob  1

Chip   2

Chiara     4

Andy   2

Jim                      21

Rachel 0

Mark       6

Brian 0

Cindy            11

Mike 0

TOTAL: 1 2 1 3 2 3 2 3 3 1 1 1 0 2 2 2 2 1 2 1 1 1 1 3 1 2 1 1 1 0 47

JUNE
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extrapolate from these daily counts to determine visitation for the entire month.  Notice that visitors are 
not sampled under this approach.  Instead, days are sampled and visitors simply contribute to the 
visitation tally on every sampled day.   

In contrast, with off-site surveys we would draw a random sample of adults (i.e., a sample of rows), 
conduct a survey to determine the total visits made to the park by each of these adults in June (i.e., the 
totals to the right of each row), then extrapolate to all adults living in the local area.  Here, visitors are 
sampled rather than days; the time period simply appears as a frame of reference in the survey, allowing 
the sampled individuals to aggregate their trips over the appropriate period.   
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DEVELOPING AND IMPLEMENTING AN OFF-SITE SURVEY 

This section describes the steps required to develop and implement an off-site survey focused on park 
visitation.  The focus is primarily on survey planning and development rather than implementation, as a 
number of excellent reference texts exist that provide step-by-step instructions for implementing 
phone, mail, in-person, and web-based surveys (e.g., Dillman et al. 2014, Groves et al. 2004).  The 
following steps are detailed below: 

 Step 1: Determine data requirements 
 Step 2: Define the target population 
 Step 3: Select an appropriate survey mode 
 Step 4: Design the survey instrument 
 Step 5: Test the survey instrument 
 Step 6: Draw the sample 
 Step 7: Implement the survey 
 Step 8: Develop weights 

 

Step 1: Determine Data Requirements 

The first step in designing an off-site survey is to determine the data requirements.  Typically, the 
primary goal is to gather data on trips taken to a particular site during a particular time period.  The 
geographic boundaries of the site should be clearly defined in order to minimize ambiguity.  The time 
period of interest can be defined in any number of ways, but it is typically delineated in months, 
seasons, or years, as survey respondents tend to organize past events in this manner.  Obtaining data on 
trips by calendar month is particularly useful, as it often facilitates comparisons with external data 
sources, such as creel studies or NPS visitation estimates.69   
 
In addition to trip data, one will also want to gather demographic data that would allow for comparisons 
with (and adjustments to) external benchmarks.  For example, data on gender, age, race/ethnicity, 
employment status, and income can be compared to census data for the local area, and the survey data 
can potentially be adjusted (i.e., through re-weighting) to address any over- or under-representation of 
specific types of respondents.  The specifics of such weighting adjustments are discussed in a later 
section.   
 
Finally, in order to calculate sampling weights, the survey needs to collect information required to 
determine the selection probability for each respondent.  At a minimum, this would typically require 
determining the number of adults in the respondent’s household.  For telephone surveys, one also 
needs to know the number of landline telephones serving the household and, for certain types of 
combined cell/landline telephone surveys, the respondent’s relative use of a cell phone versus a landline 
phone. 
 
 

                                                           
69 Creel studies are angler survey/count studies designed to characterize a water body with respect to angling 
pressure, target species, catch rates, etc.   A “creel” is a wicker basket used by anglers to hold fish.   
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Step 2: Define the Target Population 

The target population is the group of individuals whose park visitation we would like to characterize 
through the survey effort.70  Imagine, again, the hypothetical rope introduced at the beginning of this 
chapter.  The population is the set of all households (or all adults) within the geographic region defined 
by this rope.  Ideally, the rope should be positioned to maximize the number of park visitors who reside 
within the region, while minimizing the number of residents within the region who rarely or never visit 
the park.  The boundary of the region should also coincide with county or state boundaries in order to 
facilitate comparisons with demographic data from the census.   
 
Clearly, preliminary data on park visitation would be useful in selecting an appropriate geographic 
region for the survey: if we have some information about where park visitors tend to live, then the 
survey can be targeted toward those areas. There are at least three different approaches to gathering 
this preliminary data: 
 

1. Qualitative Evaluation:  The least costly (and probably most common) approach is to use 
qualitative methods to determine the appropriate target population.  This involves discussing 
the characteristics of the visitor population with rangers or other individuals who are 
knowledgeable about the park, assessing population data for nearby counties, considering the 
proximity of various population centers via local roads, and evaluating the availability of 
substitute recreation opportunities.  
 

2. On-Site Survey:  A small-scale, on-site survey can be implemented to obtain preliminary data on 
visitor origins.  This involves intercepting visitors at park entrances and asking them to provide 
the zip code of their primary residence.  This effort could potentially be combined with survey 
pretesting activities such as focus groups.  Admittedly, an on-site survey is likely to be most 
challenging in exactly those situations where off-site surveys are being considered (e.g., at sites 
with numerous entrances).  However, even a limited amount of data on visitor origins may be 
useful in developing an efficient sampling approach for an off-site survey. 
 

3. Two-Phase Off-Site Survey:  Finally, one could implement the off-site survey in two phases.  The 
first phase would be a preliminary survey designed solely to approximate visitation rates.  This 
preliminary survey would be designed to be low cost (e.g., small sample size and limited follow-
ups with non-respondents) but cover a wide geographic area.  Data from the first phase would 
be reviewed to identify an appropriate geographic target area and stratification approach for 
the second phase.  The primary visitation estimates would then be derived from data collected 
during the second phase of the survey.71 

 

                                                           
70 As we noted in Chapter 1, the population is distinct from the sampling frame.  The sampling frame is simply the 

list from which we draw the sample.  For example, the sampling frame may be a list of names and phone numbers 
(e.g., for a phone survey) or a list of all residential addresses (e.g., for a mail survey).   
 
71 This phased approach was used in a study designed to obtain data on beach trips to Padre Island National 
Seashore and other areas of the Texas Gulf Coast.  The preliminary survey determined that the vast majority of 
beach trips originated from counties within 200 miles of the Gulf Coast, and the primary survey used this area as 
the sampling frame (Parsons et al. 2009).   
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When the off-site survey focuses on a specific type of trip, the definition of the population may be more 
refined.  For example, in a study designed to estimate fishing trips, the relevant population may be the 
set of all licensed anglers living in a particular region.72  In a study designed to estimate boating trips, the 
relevant population might be individuals who own boats in a particular state or county.  These more 
specific population definitions can be extremely useful when developing a sampling frame, provided 
that contact information for licensed anglers or registered boaters are available.    
 
 

Step 3: Select an Appropriate Survey Mode 

The survey “mode” is simply the mechanism by which the survey is administered.  There are four 
primary mode options for general population, off-site visitor surveys:   
 

Mail:  With a mail survey, the questions are printed and sent to sampled residential 
households via U.S. mail or an alternative delivery service.   
 
Telephone:  With a telephone survey, trained interviewers telephone sampled numbers, ask 
scripted questions, and record responses directly in a database.   
 
In-Person:  With an in-person survey, trained interviewers visit sampled residential 
households, ask scripted questions and record the responses directly in a database. 
 
Online Panel:  With an online panel, one of the above three modes is used to recruit a 
“panel” of individuals willing to complete multiple surveys.  The panel members are emailed 
a link to the park visitor survey, and it is completed online.73         

 
These modes can also be combined with one another to create a mixed-mode survey.  For example, 
participants could be recruited by mail or through in-person interviews, then asked to participate in a 
repeat-contact  telephone survey (or “panel”), providing trip data to a trained interviewer every month 
or every quarter.74  Alternatively, participants who are contacted by mail can be offered several options 
for providing responses: they can complete an enclosed mail survey, call a toll-free number to complete 
a telephone interview, or they can visit a link (provided in the mailing) to a web-based survey.75   
 
In-person surveys and online panels are rarely used to estimate visits to parks.  In-person surveys are 
extremely expensive, as an enormous amount of personnel time is required to enumerate all 
households living in selected geographic areas, travel to sampled households within these areas, and 

                                                           
72 Note that this definition of course omits fishing trips taken by unlicensed anglers, which would include anglers 
who choose to ignore the law and anglers who are allowed to fish without a license (frequently children, veterans, 
and seniors). 
73 While there are alternative approaches to conducting online panel surveys (including online recruitment), only 
this type of design provides a probability sample, where the selection probability is known for every sampled 
individual.  Online panels that use convenience sampling (as opposed to probability sampling) have not been 
generally accepted for developing estimates of population parameters.   
74 See Brick, Willams, and Montaquila (2011) or Montaquila et al. (2013) for examples where respondents are 
recruited by mail for a telephone survey.  
75 There is some evidence, however, that offering multiple response options to individuals does not increase 
response rates (McFarlane et al. 2009). 
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complete interviews.  Given their cost, in-person surveys would only be useful at sites where the vast 
majority of visitors live in a concentrated area near the site (which reduces travel costs for interviewers) 
and where visitation rates are very high in that area (which reduces the required  sample size).   
 
While online panel surveys are less expensive to implement than in-person surveys, they face sample 
size restrictions when the target population for the study is a relatively small geographic area.  Private 
firms that implement these studies typically maintain panels that are sufficiently large to accommodate 
national and regional surveys, but the panel sizes are often too small to accommodate surveys at the 
state or local level.  Thus, an online panel is likely to be a viable option only for parks that draw visitors 
from throughout the country (e.g., Grand Canyon or Yellowstone National Park).   
 
 
Mail vs. Telephone 
  
Given the limited circumstances under which in-person (due to cost) or online panel (due to sample size) 
surveys are useful in estimating park visitation, one is typically faced with a choice between mail and 
telephone modes when planning an off-site survey effort.  The mail versus telephone decision has 
impacts that go far beyond how the survey questions are actually administered, including impacts on 
the implementation schedule, the likely response rate, the level of survey complexity that can be 
accommodated, and the availability of an adequate sampling frame.  While the mail/telephone choice 
also has cost implications, the direction and magnitude of the cost difference can be difficult to predict, 
as there are a variety of ways in which costs can be scaled up or down when implementing either type of 
survey.       
  
Telephone surveys have a decided advantage over mail surveys when it comes to speed.  High quality 
mail surveys require multiple months to implement, with a mailing sequence that typically includes an 
advance letter, a copy of the survey instrument, a reminder postcard, and one or more replacement 
surveys for non-respondents (Exhibit 4.1).  Not only do these mailings require time to actually land in 
the respondent’s mailbox, but the respondent needs to be given adequate time to complete and return 
the survey.    
 
Exhibit 4.1: Illustrative Schedule for Mail Survey Implementation 
 

Week Activity Week Activity 

1 Advance letter 8 -- 
2 Survey + incentive 9 Second replacement survey 
3 Reminder postcard 10 -- 
4 -- 11 -- 
5 -- 12 Non-respondent follow-up survey 
6 Replacement survey 13 -- 
7 -- 14 -- 

 
 
In contrast, a telephone survey can be designed and fielded within weeks, provided that a sufficient 
number of interviewers are available.76  The only significant time required is the time that passes 

                                                           
76 This is what makes telephone surveys particularly attractive for political polling, where timing is absolutely 
critical.   
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between phone calls when the respondent cannot be reached: interviewers will often need to call at 
different times of day and on different days of the week before a successful contact with a household 
occurs.  The time required for data entry is eliminated, as the interviewer types responses directly into 
an electronic database during the telephone interview.  Thus, if implementation time is critical, a 
telephone survey is often the only viable off-site survey option.  
 
Telephone surveys also have a decided advantage over mail surveys when it comes to controlling the 
flow of the survey instrument.  With a mail survey, the question sequence must be approximately linear 
in order to avoid respondent confusion.  If a mail survey includes complicated skip patterns, 
respondents will often either make mistakes (e.g., proceed to the wrong question or complete a 
question despite being told to skip it) or abandon the survey due to its apparent length and complexity.  
However, complicated skip patterns may be required if the intent is to collect detailed data on the 
characteristics of every trip taken (rather than simply asking about the total number of trips), with 
question sequences that are conditional on the types of activities pursued or the type of site visited.  
Telephone surveys can incorporate complicated skip patterns seamlessly through computer-assisted 
telephone interview (CATI) software.  
 
The area where mail surveys probably have the greatest advantage over telephone surveys is with 
respect to response rates.  As more and more households have caller ID, allow calls to go directly to 
voicemail, or abandon traditional landlines entirely, telephone survey response rates have steadily 
declined (Exhibit 4.2).  It is now quite difficult to obtain a response rate higher than 20 or 30 percent in a 
general population telephone survey.  While mail survey response rates have also declined over time, 
the decline has not been as dramatic, and a high quality mail survey can achieve a response rate in the 
30 to 50 percent range.  With low response rates, there is often a concern that respondents will differ 
from non-respondents in a systematic way, thereby leading to nonresponse bias.77,78   
 
Exhibit 4.2: Pew Research Center Telephone Survey Response Rates, 1997-2012 
 

 
   

Source: Developed from data presented in Pew Research Center (2012). 

                                                           
77 Approaches to assessing and addressing nonresponse bias are discussed in a later section.   
78 Groves (2007) cautions against focusing exclusively on response rates as a potential indicator of nonresponse 
bias; in a review of the nonresponse bias literature, he found no evidence of a simple empirical relationship 
between response rates and nonresponse bias. 
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A second significant advantage associated with mail surveys is that an excellent sampling frame exists in 
the U.S. Postal Service’s computerized Delivery Sequence File (DSF).  This file, which is continuously 
updated by the postal service and available from several vendors, provides a list of all residential 
delivery addresses within the United States.  The DSF only recently became available to survey 
practitioners; the sampling frames available for mail surveys prior to the early 2000’s were far inferior.    
 
With phone surveys, the sampling frame situation is somewhat muddled.  Samples of listed landline 
numbers associated with a specific geographic region can be obtained from numerous vendors, but 
listed numbers underrepresent urban and transient households.  Alternatively, random-digit dialing 
(RDD) techniques can be applied to blocks of non-cell numbers associated with a particular geographic 
area, but RDD is expensive because a large number of nonresidential and non-working numbers need to 
be screened out during the calls.  Furthermore, both of these approaches (sampling from listed numbers 
and applying an RDD approach) exclude cell phones.  Focusing entirely on households with landlines will 
distort survey results, as these households tend to be older, wealthier, and less Hispanic.  In order to 
represent cell-only households, one can obtain separate lists of cell phones and sample from both 
landline and cell phone lists in a “dual frame” design.  Unfortunately, however, hand dialing of cell 
phone numbers is required by law, which substantially increases implementation costs.  Furthermore, 
lists of cell phones numbers do not align perfectly with specific geographic areas, as individuals typically 
keep their cell number when they move.  Finally, the procedures for combining and appropriately 
weighting data from the two sampling frames is quite complex; standard approaches are still evolving.  
 
Exhibit 4.3: Comparison of Mail and Telephone Survey Modes 
   

 Mail Telephone 

Response rate Typically 30 to 50 percent Typically 20 to 30 percent or 
lower 

Ability to incorporate 
complex question 
sequences and skip patterns 

Limited High 

Ability to incorporate visual 
aids such as maps depicting 
site locations 

Can be included with 
survey 

Can be sent prior to the 
initial call, but only to 
landline numbers that can be 
matched to an address.  Can 
be sent after the initial call in 
a panel study. 

Sampling within household Relies on respondent  Interviewer-assisted 

Data entry Slow; requires QA/QC 
process 

Immediate (data entered 
during interview) 

Implementation speed  Requires minimum of 2-3 
months after final survey 
is available 

Requires 4-8 weeks after final 
survey is available 

Quality of sampling frame Excellent Good; but weighting is 
difficult with combined 
cell/landline frames 
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 Step 4: Design the Survey Instrument  
 
Designing an effective survey instrument is a delicate juggling act, requiring the application of a 
relatively unique combination of logic and verbal skills, careful attention to detail, and unwavering 
dedication to improving the experience of the respondent.  The individual designing the instrument 
must know exactly what type of data are needed (and what data are not) so that efficient and effective 
questions can be designed to obtain that data.  Flexibility is critical, as it is not at all unusual for an 
important survey instrument to be revised 10 or 20 times, including revisions that occur during the 
survey testing process (Step 5).    
 
A good survey instrument respects the value of the respondent’s time by efficiently extracting the 
required information.  Instructions are brief, questions are direct, response options are clear, and the 
skip pattern is easy to follow.  The survey should have an ordered, logical structure that the respondent 
will recognize.  Researchers should resist the temptation (or pressure from clients/management) to add 
questions that are not directly related to the task at hand; the researcher should be able to explain how 
every single question in the survey contributes to the overall goal of obtaining unbiased trip estimates.  
Lengthy, poorly organized, or confusing surveys signal to the respondent that the researcher’s time is 
more important than their own.  They will provide poor data due to respondent confusion and increased 
nonresponse.   
 
Mail surveys have an added burden (relative to phone surveys) in that appearance matters.  This is not 
merely an incidental cosmetic consideration.  After an individual opens an envelope with a survey, he or 
she will typically glance at the instrument and make an immediate decision – to keep the survey or to 
discard it.  Surveys that appear to be professionally designed, interesting, important, and short will be 
less likely to end up in the trash.  The survey instrument should not have large blocks of dense text, 
unusually small font, or an absence of white space. There cannot be a disorganized mix of underlining, 
boldface, and italics.  In a word, the survey must be elegant.   
 
 
Gathering Data on Trips  
 
The portion of the survey that gathers trip data is critical to the success of the research effort. However, 
before designing specific questions about park visits, the survey must carefully define the type of trip 
that is of interest.  The trip definition will have both temporal and spatial components.  For example, a 
survey of Texas residents might ask about trips taken to Gulf Coast beaches (spatial component) during 
the previous August (temporal component).  The trip definition should also clearly define the type of site 
that is of interest.  With beach trips, for example, one might be interested in trips to saltwater beaches 
but not freshwater beaches.   
  
Exhibit 4.4: Defining the Spatial and Temporal Components of Trips  
 

 

Throughout the survey, when we ask questions about beaches along the Texas Gulf Coast, 

we are referring to Texas saltwater beaches between Mexico and Louisiana.  Did you take 

any day trips to Texas Gulf Coast beaches in June, July, or August of 2015? 
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The survey should clearly define what is meant by a “trip.”  Here, we define a trip in a manner that is 
consistent with the trips that are counted in an on-site count study: a trip is simply an occasion where 
the respondent leaves home (or a temporary overnight location such as a hotel or rented home), travels 
to the site for recreation, then returns home.   
 
When asking about trips taken by the respondent, the survey should ideally focus on trips to a set of 
sites that is broader than the site of interest.  With a telephone survey, asking only about trips to the 
site of interest may lead to responses that are intended to please the interviewer:  if the respondent 
knows that a particular site is the focus of the study, he or she will want to report trips to that site to 
“help” the interviewer.  With mail surveys, focusing only on the site of interest can lead to nonresponse 
bias, as respondents who do not visit the site may think that the survey is not relevant to them and 
discard it.      
 
For example, suppose we were interested in estimating the number of trips taken by Massachusetts 
residents to Cape Cod National Seashore.  Rather than focusing solely on that site, we might ask 
respondents to report trips taken to any ocean beach in New England.  Then, in the data analysis, trips 
to Cape Cod National Seashore would be identified and tallied separately, while trips to other ocean 
beaches would be disregarded.  The data on trips to substitute sites provides a potential opportunity to 
estimate a random utility travel cost model, should such a modeling approach be deemed useful in 
assessing recreational damages at the site.   
 
The set of sites can be defined either ex ante or ex post.  When sites are defined ex ante, the respondent 
is presented with the full list of sites and asked about the number of trips taken to each of those sites.  
This approach requires that the researcher have a thorough knowledge of all sites that could potentially 
be visited by respondents, including any potential site nicknames.  Applying the ex ante approach is 
simpler when the number of sites is reasonably small and when respondents are likely to be familiar 
with the names of sites that they visited.  For example, if one were asking about trips to national parks 
in Utah and Arizona, all of the parks could be listed by name, and respondents would likely recognize 
any that they had visited.79   
 
When there are a large number of sites or when respondents are not likely to know the names of the 
sites that they visited, it may be preferable to define sites ex post.  Under this approach, the respondent 
is asked to list every destination visited, as well as the number of trips taken to that destination during 
the time period of interest.  For each destination, the respondent provides identifying information such 
as the name, the closest town or city, and any nearby landmarks.  After data collection is complete, the 
researcher uses this detailed destination data to define a set of sites for the analysis.   
 
 
 
 
 
 
 
 
 

                                                           
79 In order to increase the accuracy of responses, it is helpful to prepare a map of the sites for respondents that 
includes important roads, cities, and other landmarks.    
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Exhibit 4.5: Gathering Data on Trips 
  

   
We recommend defining sites ex ante wherever possible, as respondents often have difficulty describing 
trip details in a manner that allows the researcher to unambiguously determine the trip destination.  
Furthermore, providing ex ante site definitions can reduce respondent burden. 
 
 
Gathering Data on Demographics 
 
Responses to demographic questions are used to reweight survey data to match census benchmarks in 
order to minimize potential nonresponse and coverage biases.   The core set of demographic questions 
typically focus on the respondent’s age, gender, education, race/ethnicity, and household income.  
When a single adult is randomly selected from within each household, the survey must also ask for the 
number of adults in the household so that selection probabilities (and associated weights) can be 
calculated.  Similarly, with phone surveys, the survey must ask about the number of landline phone 
numbers within the household, as selection probabilities are higher for households that have more 
landline numbers.  Finally, telephone surveys need to obtain the zip code of the respondent’s primary 
residence so that the sample can be matched to census data (in the case of mail surveys, the 
respondent’s zip code is of course already available from the sampling frame).  
 
With demographic questions, it is especially important to resist the temptation to be creative.  The 
wording of the questions and the design of the response categories should be as similar as possible to 
what is used by the U.S. Census in the current version of the American Community Survey.  This will 
allow the survey responses to be compared directly with census data.  With education and with 
race/ethnicity, the large number of response options used by the census can be collapsed into a smaller 
number of categories.  
 
 
 
 

  

In the table below, please write the names of the local beaches that you visited in June/July/August of 
2015, along with the number of trips you took to each beach.  (Please see the enclosed map for the 
names and locations of local beaches.)  

 

BEACH NAME  

NUMBER OF TRIPS 

JUNE 2015 JULY 2015 AUGUST 2015 

Padre Island 0 5 2 

Galveston 1 3 0 

Etc.    
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Step 5: Test the Survey Instrument 

 
Even with herculean efforts to design a perfect survey and with numerous rounds of review, no survey 
should be fielded without thoroughly testing the instrument.  It is surprising how many different 
interpretations can arise from survey questions that seem perfectly logical and straightforward to the 
researcher designing the survey.  Testing surveys on colleagues is certainly useful for refining the initial 
instrument, but one must keep in mind that (fortunately) not everyone thinks like economists, 
statisticians, or environmental policy analysts.  The errors and complications that need to be uncovered 
are not simply typos and incorrect skip patterns; they are subtle interpretation issues that are nearly 
impossible to identify without adequate testing on members of the target population. 
 
The activities typically used to test and refine a draft survey instrument are described below, including 
expert review, focus groups, cognitive interviews, and pilot tests.  The order and scale of these activities 
differs across surveys and across survey organizations.  The term pretesting is often used to describe the 
testing activities that take place prior to the pilot, but the terminology that researchers apply to the 
various testing activities is not always consistent.   
 

 Expert Review: The testing process begins with expert reviews conducted by colleagues who 
have experience with park management and/or questionnaire design.  This would include 
agency personnel who are familiar with the site of interest and its visitors.  The expert review 
helps to confirm that the draft questions are well designed, the response alternatives are 
reasonable, instructions to the interviewer (phone) or respondent (mail) are clear, the overall 
structure and flow of the survey is logical, and the survey will provide the specific data required 
by management.       

 Focus Groups:  Focus groups are discussions led by a trained moderator with approximately 5-10 
individuals per group.  The group discussion format provides an efficient means for researchers 
to investigate issues of potential concern related to the survey topic, including the definition of 
a trip, the ability of participants to recall recreation trips, the language used by the public when 
discussing trips, awareness of parks in the local area, and nicknames used for local recreation 
sites.  The moderator ensures that all participants are comfortable discussing their opinions, 
that vocal participants do not dominate the discussion, and that the discussion flows smoothly 
from topic to topic.  The moderator will often work from a discussion outline developed in 
consultation with the researcher, but he or she also explores unanticipated issues as they arise 
during the discussion.  

Focus groups typically last 1 ½ to 2 hours and take place in the evening at a professional facility 
with an adjacent viewing room for researchers.  Focus group facilities have options for video 
recordings and for real-time, online viewing of the groups.  The participants in the groups should 
be broadly representative of the target population with regard to age, gender, and education.  
They are typically recruited from an existing panel maintained by a marketing firm, but they can 
also be recruited randomly from the population (at a much greater expense).  It is important in 
studies of outdoor recreation to ensure that a subset of the focus group participants be active 
participants in the activity of interest.  Focus group participants are typically paid a small 
honorarium for their participation.   
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 Cognitive Interviews:  Cognitive interviews are one-on-one discussions where a trained 
researcher or interviewer walks through draft survey questions with a respondent.  
Respondents are often asked to verbalize their thoughts or to “think aloud” as they read and 
respond to the draft questions.  After completing each question, the interviewer may ask how 
the question was interpreted, how a response was selected, or how confident the respondent is 
in his or her response.  In the case of recreational trips, the interviewer should pay particular 
attention to the definition of a trip, the definition of the site, and to the ability of the 
respondent to accurately recall the number and destination of all trips taken during the 
appropriate time period.  For mail surveys, cognitive interviews can also be used to evaluate the 
clarity and appearance of accessory mailings, such as letters, envelopes, and reminder 
postcards.  

 Pilot Test (or Field Pretest):  A pilot test is a dry run or “dress rehearsal” of the survey with a 
smaller sample size.  To the extent possible, it should mimic the main survey, including 
respondent tracking procedures, mailing/calling procedures, etc. in order to identify any 
potential logistical problems.  Respondents for the pilot are drawn from the same sampling 
frame that will be used for the full survey.  Data from the pilot test can be tabulated to identify 
unusual response patterns, issues with item nonresponse, or inadequate variation in responses.  
In addition, trip data from the pilot can potentially be used to obtain preliminary variance 
estimates for a power analysis.   

In the case of phone surveys, researchers often listen in on a sample of live or recorded 
interviews, and post-interview debriefings are typically conducted with interviewers to identify 
areas of concern.  Recorded interviews can also be subjected to “behavior coding,” whereby 
analysts listen to recorded interviews and code the interactions associated with each survey 
question along a variety of dimensions, such as: whether the question was read verbatim, 
whether the interviewer changed the meaning of the question, whether the respondent 
requested clarification, or whether an acceptable response was provided.  

   
 

Step 6: Draw the Sample 

 
In contrast to on-site survey efforts, drawing a sample for an off-site survey is a relatively 
straightforward process.  The sampling frame is typically purchased from a private vendor.  For a phone 
survey, the sampling frame would simply be a list of phone numbers within the targeted geographic 
area near the park.  For a mail survey, the sampling frame would be a list of all residential addresses 
within that geographic area.  
  
A simple random sample of size n can be drawn from the frame by:  
 

1. assigning a random number between zero and one to each element of the list,  
2. sorting the list by the value of that random number, then  
3. selecting the first n elements of the sorted list.   
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The random number can be assigned within any software package.  Excel uses the “Rand” function, for 
example, and Stata uses the “runiform” command.80    
 
In many circumstances, the frequency of trip-taking is likely to diminish rather quickly with distance 
from the park.  As a result, it may be more efficient to stratify the frame by area (e.g., by county) and 
sample at a higher rate in geographic areas that are closer to the park.  As detailed data on trip-taking 
rates are often unavailable, researcher judgment is typically necessary in allocating the overall sample 
among the various strata.                
 
A stratified random sample (see Chapter 1) with H strata, an overall sample size of n, and a sample size 
of 𝑛ℎ within stratum h can be drawn by: 
 

1. assigning a random number between zero and one to each element of the list, 
2. dividing the list into H mutually exclusive groups, 
3. sorting each group by the value of the random number, and 
4. selecting the first  𝑛ℎ elements of the sorted list within each group. 

 
Off-site surveys typically have a second stage of sampling:  selecting a single adult within the household 
to interview or to complete the mail survey.  Although there are several ways to randomly select an 
adult, one of the most common is the “most recent birthday” method (or the analogous “next birthday” 
method).81  With this method, the survey is completed by the adult within the household who has most 
recently celebrated a birthday.  In a telephone survey, the first person who responds is asked to pass the 
phone to the adult in the household who most recently celebrated a birthday.  If that person is not 
home or is unavailable, a callback time is arranged (interviewing the respondent as a proxy for the 
unavailable adult is not recommended).82  In a mail survey, the most recent birthday instructions are 
placed in the letter that accompanies the survey instrument:   
 
  

                                                           
80 An advantage of using Stata to draw the sample is that the sampling outcome can be replicated by setting the 
seed.         
81 Olson et al. (2014) compare the “most recent birthday” and “next birthday” methods in mail surveys and find 

little difference in response rates or selection accuracy.  They do find that neither method is followed particularly 
carefully by the responding household.   Similarly, Battaglia et al. (2008) found that 36 percent of mail survey 
respondents were misselected by the birthday method.  Studies conducted within the context of RDD telephone 
surveys have found substantially less selection error (closer to 20 percent) using birthday methods (Lind et al. 
2001). 
82 With phone surveys, the individual who first answers the phone often incorrectly self-identifies as the randomly 
selected adult.   An alternative approach is to have the interviewer “roster” the household, then randomly select 
an adult from this roster (Kish 1949).  The disadvantage of the rostering approach is that it requires that the 
interviewer ask detailed questions about the household at the beginning of the interview, before trust has been 
established.  Rizzo et al. (2004) have recently proposed a promising alternative to the Kish method.   
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Exhibit 4.6: The Next Birthday Method for Sampling an Adult within the Household  

 

Dual Frame Surveys 
  
In a dual-frame survey, samples are drawn independently from two different frames, and the resulting 
datasets are pooled in the analysis.  In some cases, the second frame is added to cover a portion of the 
population not covered by the primary frame.  In telephone surveys, for example, neither a landline-only 
frame nor a cell-only frame would adequately cover the entire population of households, so researchers 
typically sample from both frames.   
 
In other cases, the second frame is added to more efficiently target park visitors.  Suppose, for example, 
that we need to estimate trips taken to a large reservoir, and suppose that a large fraction of those trips 
are fishing trips.  We could supplement an address-based sample (ABS) of households with a sample 
from a frame of licensed anglers.  Because licensed anglers have the opportunity to be selected from 
either frame, they will have higher selection probabilities than non-anglers.83  Weights would be used to 
compensate for this in the analysis. In order to calculate appropriate selection probabilities, every 
respondent sampled from the ABS frame needs to be asked if he or she currently owns a fishing license.    
 
    
 

Step 7: Implement the Survey 

  
The methods used to implement mail and phone surveys are fairly well established and are documented 
elsewhere (e.g., Dillman et al. 2014; Groves et al. 2004).  Survey implementation invariably involves 
numerous contact attempts in an effort to minimize non-response.  With mail surveys, these contact 
attempts take the form of multiple first class mailings, including an advance letter (often with a 
monetary incentive), survey instrument, reminder postcard, and one or more replacement survey 
instruments.   With phone surveys, the contact attempts involve phone calls at different times of day 
and on different days of the week.  
 
 
 

Step 8: Develop Weights 

  
Prior to analyzing survey data, a single “weight” (𝑤𝑖) must be assigned to every respondent.  The weight 
provides a measure of the relative importance of each observation, and it must be used when 

                                                           
83 The selection probability for anglers would be equal to: (1 – (the probability of not being selected in the primary 
sampling frame) x (the probability of not being selected in the licensed angler frame)).   

The questionnaire should be completed by the adult (18 years of age or older) living in your 

household whose birthday is the first to occur after November 1st.  Please have this person 

complete the questionnaire even if he or she rarely visits local parks.  This will allow us to 

obtain responses from a representative group of residents. 
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extrapolating from the sample data to estimate population parameters such as mean or total trips. The 
sum of the weights across all respondents in the sample should equal the overall population size: 
 

∑ 𝑤𝑖 =

𝑛

𝑖=1

𝑁 

 
This will always be true of survey weights, and it is an important check on weight calculations.  When 
expressed in this way, one can see that the weight associated with a respondent can be thought of as 
the number of individuals that the respondent “represents” in the population.   
 
After calculating survey weights, estimating total trips to a site is simple.  Letting 𝑦𝑖  represent the 
number of trips reported by respondent i, total trips are estimated as a weighted sum: 
 

 
�̂� = ∑ 𝑤𝑖

𝑛

𝑖=1

𝑦𝑖  

 
The concept of a survey weight is often foreign to economists and others who are not accustomed to 
working with survey data.  This is at least partially due to the fact that when the sample design is 
straightforward and no nonresponse or coverage adjustments are desired, weights can either be ignored 
or incorporated implicitly.   
 
Survey weights are typically calculated through the following steps (Heeringa et al. 2010, pp. 35-44), 
which are described in detail below: 
 

1. Calculation of base weights (or design weights) as inverse selection probabilities.  
2. Implementation of non-response adjustments using sampling frame data. 
3. Poststratification or raking to match population controls (if available). 

 
 
1. Calculation of Base Weights 
 
The first step involves the calculation of a base weight to address differential selection probabilities for 
the units on the frame.  This addresses the use of different sampling rates for households in different 
geographic strata, for example.  The base weight (𝑤𝑖) is simply equal to the inverse of the respondent’s 
overall selection (or inclusion) probability (𝑝𝑖): 
 

𝑤𝑖 =
1

𝑝𝑖
 

 
For example, if a simple random sample of 1,000 individuals were randomly drawn from a population of 
200,000 adults, and if every sampled adult responded to the survey, then the base weight for each 
respondent would be equal to 200, as each respondent had a 1/200 chance of being selected into the 
sample.84 

                                                           
84 When every unit has the same selection probability (and hence the same base weight), the sample design is 
referred to as EPSEM, which stands (loosely) for “Equal Probability of SElection Method.”  Examples of EPSEM 



Chapter 4: Off-Site Surveys 
 

110 
 

 
With household surveys, one often implements a second stage of sampling: selecting a single adult from 
within each household.  When this second sampling stage is implemented, the selection probability 
must be adjusted to address the fact that individuals from households with more adults have a lower 
probability of being selected into the sample.  The adjustment involves simply multiplying the household 

selection probability by  1 𝑎𝑖
⁄ , where  𝑎𝑖  is the number of adults in respondent i’s household.  This 

adjustment places a higher weight on respondents from larger households to compensate for their 
lower selection probability.85   
 
It is important to keep in mind that when we randomly sample a single adult from each household, 
standard statistical formulas for simple random sampling no longer apply, even if we have 100% 
response and a perfect sampling frame.86  This is no longer a simple random sample, as each respondent 
does not have the same selection probability.  In fact, the sample is now a multi-stage cluster sample.  
Every household can be viewed as a cluster of adults.  The sampling process involves drawing a sample 
of clusters (the first stage), then randomly selecting a single adult from within each cluster (the second 
stage).  
  
 
2. Nonresponse Adjustments to Base Weights 
 
The second step involves adjustments to the base weights to address potential nonresponse bias.  These 
adjustments take advantage of data from the sampling frame on the characteristics of responding and 
nonresponding units to either (1) implement a cell weighting method or (2) estimate a response 
propensity model (Little and Rubin 2002).  The overall impact of either approach is to increase weights 
for respondents who are most similar to nonrespondents (with respect to the characteristics data 
available from the frame) and to decrease weights for respondents who are least similar to 
nonrespondents.   
 
Under the cell weighting (or weighting class) method, the sample (including both respondents and 
nonrespondents) is first partitioned into mutually exclusive cells using characteristics that are expected 
to be related to both response rates and the variable of interest (i.e., trips).  Next, a single response rate 
is calculated for each of these cells.87  Finally, within each cell, each respondent’s base weight is 
multiplied by the inverse of the cell response rate to obtain an adjusted weight.   This process reduces 
weights for respondents in cells with high response rates and increases weights for respondents in cells 

                                                           
sample designs include simple random sampling and stratified random sampling where the same sampling rate is 
applied within each stratum.   
85 With random-digit dial telephone surveys, the base weights are typically adjusted to address the fact that 
individuals living in households with more than one landline have higher selection probabilities.  The adjustment 
simply involves dividing the base weight by the number of landline phone numbers serving the household (which is 
determined through a survey question).   
86 If the survey gathers data on trips taken by everyone in the household (or all adults), then there is no within-
household sampling.  In this case, the survey provides household-level data rather than individual-level data.  In 
the coastal household telephone survey component of MRIP, for example, the respondent provides data on 
saltwater fishing trips taken by all members of the household.  Similarly, in the National Crime Victimization 
Survey, interviews are completed with all household members 12 years old or older.       
87 These response rates are weighted response rates: they are equal to the sum of the base weights for responding 
units divided by the sum of the base weights for all units.   
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with low response rates.  Essentially, the method adjusts the respondent weights within a cell so that 
these respondents represent the non-respondents in the cell.      
 

Example 4.3:  Implementing Cell Weighting Adjustments  

Suppose that the only frame data available from a licensed angler survey are the angler’s age and 
gender. We conduct a survey, calculate base weights, then calculate a response rate for six different 
groups obtained by crossing gender with three age categories: 18 to 39, 40 to 65, and over 65.  The 
response rate and cell weighting adjustment for each group are as follows: 
 

 
Gender Age 

Weighted  
Response Rate (r) 

Cell Weighting 
Adjustment Factor (1/r) 

Female 18 to 39 43% 2.33 
 40 to 65 51% 1.96 
 over 65 60% 1.67 

Male 18 to 39 32% 3.13 
 40 to 65 44% 2.27 
 over 65 49% 2.04 

 
Applying the cell weighting adjustment factors increases weights for male respondents relative to 
female respondents, as females had higher response rates than males.  The weights need to be adjusted 
upwards for the male respondents because fewer males responded and, as a result, each male 
respondent must bear a larger share of the overall burden required to represent all male anglers.  
Similarly, applying the adjustment factors increases relative weights for younger respondents, as young 
anglers had lower response rates than older anglers.  
 
 
    
 
Under a response propensity model the sample (including both respondents and nonrespondents) is 
used to estimate a logit or probit model that predicts response as a function of variables from the 
sampling frame.  The base weights are then multiplied by either (1) the inverse of these predicted 
response probabilities, or (2) the inverse of cell-specific weighted response rates, where cells are 
defined using predicted response probabilities.  The second approach is a variation on the cell weighting 
method described above, except that units are assigned to mutually exclusive cells based on predicted 
response probabilities (e.g., 0 – 0.199, 0.2 – 0.399, etc.).  The advantage of applying the cell weighting 
method to the predictions from a response propensity model is that it increases the stability of 
estimates by reducing the likelihood of extreme weights.   
 

3. Poststratification or Raking to Match Population Controls 
 
The third step involves poststratifying or “calibrating” the adjusted weights so that the (weighted) 
respondents mirror the population with respect to observable characteristics.  Respondents are divided 
into mutually exclusive and exhaustive groups, then the weights within each group are rescaled so that 
the prevalence of the group among the respondents matches the prevalence of the same group within 
the population.  Poststratification can help to minimize potential nonresponse or coverage bias.   
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Example 4.4: Poststratification 
    
Suppose that after completing a survey of a sample of registered boat owners in Florida, the state 
provides the research team with summary data on the percentage of all boat owners who are: males 
under 40, females under 40, males 40 or over, and females 40 or over.  The team has analogous data 
from the survey respondents, and the adjustment factors are calculated as the relative percentages in 
each group:   
 

 
Post-Stratum 

Percentage of 
Respondents 

Percentage of 
Population 

Post-Stratification 
Adjustment Factor 

Males under 40 8% 16% 2.00 = 0.16/0.08 
Females under 40 25% 20% 0.80 = 0.20/0.25 
Males 40 or over 20% 30% 1.50 = 0.30/0.20 
Females 40 or over 47% 34% 0.72 = 0.34/0.47 

 100% 100%  
 
Thus, weights associated with all males under 40 are scaled up by a factor of 2.00, as this stratum is 
under-represented among the respondent group.  Similarly, weights associated with females under 40 
are scaled down by a factor of 0.80, weights associated with males 40 or over are scaled up by a factor 
of 1.50, and weights associated with females 40 or over are scaled down by a factor of 0.72.     
 
 
    
 
In general population surveys, weights are typically “raked” to match census data on characteristics 
(e.g., gender, education, age) of the adult population for the relevant geographic area (Battaglia et al. 
2009).   Raking is a form of poststratification that is implemented when available population data are 
limited to “marginal” totals rather than “cell” totals.  Consider gender and education, for example, and 
suppose we have binary categories for these two characteristics: male versus female and college 
educated versus not college educated.  The census might provide “marginal” totals such as the number 
of adult males within a particular county and the number of college-educated adults within that county, 
but it might not provide “cell” totals such as the number of college-educated adult males within the 
county.   Raking involves developing adjustment factors so that the marginal totals for the survey data 
match the marginal totals available from the census.   
 
Raking is best explained through the use of a simple example.   
 
 

Example 4.5:  Raking 

Suppose that we conduct a mail survey of eastern North Carolina residents focused on ocean beach 
recreation.  We calculate base weights, then adjust these base weights using a cell weighting method 
(based on distance from the coast).  We would like to rake these adjusted base weights so that they 
match eastern North Carolina census data with respect to gender and age.   
 
According to the census, there are 445,000 adults living in the relevant counties of eastern North 
Carolina.   Of these adults, 211,000 are male and 234,000 are female.  The census data also indicate that 
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204,000 adults in the area are younger than 45 and 241,000 are 45 or older.  These are the marginal 
“controls” that will be used in the raking process.  
 
We begin the raking process by calculating the total survey weights for four groups of respondents: men 
< 45, men 45+, women < 45, and women 45+.  The weight totals for the four groups are shown within 
the boxed region in the table below (in thousands): 
 

 Male Female TOTAL 

< 45 66 94 160 
45+ 129 156 285 

TOTAL 195 250 445 
  
Note that the overall total for the weights is 445,000, which we would expect, since the sum of all 
survey weights should equal the population size.  We calculate the “marginal” totals in the above table 
by summing each row and column.  These are the totals that we need to match to the census controls.  
The approach we will take in order to achieve this match is to adjust the weight totals within the boxed 
region so that the row totals match the census data, then adjust these new weights so that the column 
totals match the census data, then iterate this process until both the row and column totals match the 
census data.   
 
Step 1: Adjust the weights so that the row totals match census controls.  The census data indicate that 
204,000 adults are younger than 45, yet our weights for respondents younger than 45 sum to 160,000.  
The census data indicate that 241,000 adults are 45 or older, yet our weights for these respondents sum 
to 285,000.  Thus, younger respondents are underrepresented in our data.  We address this by scaling 
up the weights for respondents under 45 (the first row) by 204/160 and scaling down the weights for 
respondents 45 or older (the second row) by 241/285 to produce the following adjusted weights: 
 

 Male Female TOTAL 

< 45 84 120 204 
45+ 109 132 241 

TOTAL 193 252 445 
 
Note that the row totals now match the census controls, but the column totals do not.  
 
Step 2: Adjust the weights so that the column totals match census controls.    The census data indicate 
that 211,000 adults are male, yet our weights for men sum to 193,000.  The census data indicate that 
234,000 adults are female, yet our weights for female respondents sum to 252,000.  Thus, men are 
underrepresented and women are overrepresented.  We address this by scaling up the weights for men 
(the first column) by 211/193 and scaling down the weights for women (the second column) by 234/252 
to produce the following adjusted weights: 
 

 Male Female TOTAL 

< 45 92 111 203 
45+ 119 123 242 

TOTAL 211 234 445 
  
Note that the column totals now match the census controls, but the row totals do not.  However, the 
row totals are closer to the census controls than they were prior to implementing Step 1.     
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Step 3: Repeat steps 1 and 2 until the row and column totals both match census controls.    After 
repeating Step 1 and rescaling the weights so that younger and older respondents again match the 
census controls, we obtain the following adjusted weights:   
 

 Male Female TOTAL 

< 45 92 112 204 
45+ 119 122 241 

TOTAL 211 234 445 
  
Note that both the column and the row totals now match the census controls, so we do not need to 
proceed further.  The final adjustment factors for the weights are calculated for each cell as the final 
adjusted total relative to the starting values, or: 
 

 Male Female 

< 45 1.40 = 92/66 1.19 = 112/94 
45+ 0.92 = 119/129 0.78 = 122/156 

  
Thus, the overall impact of the raking adjustments is to increase weights for young men (by a factor of 
1.40) and young women (by a factor of 1.19), and to decrease weights for older men (by a factor of 0.92) 
and older women (by a factor of 0.78).  Although raking calculations are typically much more 
complicated, using three or more control variables, this two-dimensional example serves to illustrate 
the mechanics.    
 
 
    
 
 
As poststratification relies on demographic characteristics provided by the respondent, any missing data 
on those characteristics due to item nonresponse must be imputed prior to implementing the raking 
procedure.  That, is any missing values must be replaced with “proxy” values.  While it may be tempting 
to simply replace missing values with the mean, median, or mode for a given variable, this reduces the 
variance of the characteristic, and it produces an artificial spike in the distribution.  Alternative 
imputation approaches frequently used by survey researchers (and which preserve the variance of the 
imputed variable) include hot decking and regression imputation.  
 
With hot decking, one begins by dividing the sample into mutually exclusive cells based on non-missing 
data items (say X1, X2, and X3), where respondents in the same cell are expected to be broadly similar.  
Next, for each “recipient” respondent who has missing data, we randomly select a single “donor” 
respondent from the same cell, and the donor’s response is used in place of the missing data for the 
recipient.   
 
With regression imputation, one estimates a regression model using the subset of the cases that do not 
have missing data.  For example, when imputing Y, one might regress Y on X1, X2, and X3 using the cases 
where Y is not missing.  The estimated joint distribution of the regression parameters is then used to 
obtain a predicted value for cases where Y is missing.  In order to preserve the variance of Y, a random 
draw from the estimated distribution of the error term is added to each prediction.   
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When imputation methods are applied to multiple variables with missing data, they are implemented 
sequentially.  The variable with the least amount of missing data is typically imputed first, and the 
variable with the most missing data is imputed last.  Often, variables that are imputed earlier in the 
sequence are used as explanatory variables (or to define hot-decking cells) for use in imputing variables 
later in the sequence.   For example, after hot-decking education using cells defined by geographic area, 
one could then hot-deck race using cells that cross geographic area and education. 
 
When imputation methods are applied, the resulting dataset includes imputed values that are 
indistinguishable from non-imputed values (with the exception of 0/1 flags that indicate which cases 
were imputed).  As a result, standard errors for any estimates developed from the dataset will not 
reflect the additional variance associated with the imputation method itself.  This additional variance 
can be incorporated through multiple imputation methods (Rubin 1987; Little and Rubin 2002). 
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NONRESPONSE BIAS  
  

Despite our best efforts, off-site surveys efforts will always have at least some nonrespondents, or 
sampled individuals who were eligible for the survey but who did not respond.88  In some cases, 
nonrespondents are individuals who simply were not contacted and therefore never actually chose not 
to respond. For example, they may have been on an extended vacation when the survey was fielded, or 
they may have been at work every time telephone interviewers tried to contact them.  These individuals 
are typically referred to as noncontacts.  In other cases, non-respondents made a conscious decision not 
to respond – they may have spoken with an interviewer briefly and refused to participate or they may 
have glanced at a mail survey and immediately discarded it.  These individuals are typically referred to as 
refusals.  In the case of phone surveys, respondents may also start a survey but fail to complete it.  
These are called breakoffs.   
 
Nonrespondents have two important impacts on a survey.  First, they increase the cost per completed 
survey, as a larger initial sample needs to be drawn in order to achieve an adequate number of final 
responses.  If 1,000 completed surveys are needed, for example, and a 50 percent response rate is 
anticipated, then an initial sample size of 2,000 would be required.  In a mail survey, this would 
represent additional postage, incentives, printing, and tracking costs.  In a phone survey, this would 
represent additional staff time for telephone calls. 
 
Second, nonrespondents can lead to nonresponse bias if nonrespondents differ from respondents with 
respect to the population parameter of interest.  For example, if the individuals who respond to a mail 
survey from the National Park Service are more likely to visit national parks than those who don’t 
respond, then naïve estimates of trips based on the respondent data will be biased upwards.  One way 
to think about nonresponse bias is to imagine that the population includes only two types of individuals: 
those who always respond to surveys and those who never respond to surveys.  In that case, 
nonresponse bias is approximately equal to the product of (1) the fraction of non-respondents in the 
population and (2) the difference between respondents and non-respondents with respect to the 
variable of interest (Lohr 1999).  Letting 𝑁𝑟  and 𝑁𝑛𝑟 represent the number of respondents and 
nonrespondents in the population, respectively, and letting �̅�𝑟 and �̅�𝑛𝑟 represent the corresponding 
means for these two groups with respect to the variable of interest, nonresponse bias would be written 
as: 
 

𝑁𝑅 𝑏𝑖𝑎𝑠 ≈
𝑁𝑛𝑟

(𝑁𝑟 + 𝑁𝑛𝑟)
(�̅�𝑟 − �̅�𝑛𝑟) 

 
Note that non-response bias can be driven to zero if the response rate is close to one or if respondents 
are similar to non-respondents.  Thus, while a low response rate is necessary for nonresponse bias, it 
does not guarantee that it exists.  One can potentially have a low response rate and no non-response 
bias if the respondents are similar to the non-respondents with respect to the variable of interest.   
 
 
  

                                                           
88 This section addresses what is referred to as “unit nonresponse,” or the failure to obtain any information at all 
from a sampled individual or household.  This is distinct from “item nonresponse,” where a sampled individual or 
household fails to respond to a particular item on the survey.   
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Minimizing Nonresponse Bias through Survey Design 
 
If a high response rate can be achieved, there will be little room for nonresponse bias, even if 
respondents do differ substantially from nonrespondents.  It is therefore in our best interest to obtain 
the highest response rate that is reasonably possible, given available resources for survey 
implementation. 
 
Techniques for achieving high response rates include: 
 

 For mail surveys, pay careful attention to the appearance of all materials sent to the 
respondent.  They should be sent via first-class mail (rather than bulk) and have a professional 
appearance. 

 For telephone surveys, use highly trained, cordial interviewers who are very familiar with the 
content and flow of the survey. 

 Send a signed pre-notification letter on agency letterhead describing the purpose of the survey 
and the importance of the individual’s response.   

 Include a small, non-contingent cash incentive with the pre-notification letter or survey 
instrument (e.g., $5).  

 Make multiple attempts to contact sampled individuals who do not initially respond.  Consider 
efforts to get the attention of nonrespondents during these follow-up contacts, such as priority 
mail, a persuasively worded letter, phonecalls by interviewers who are specially trained to 
convert nonrespondents, or an alternative survey mode.     

 Minimize the effort required to respond to mail surveys by including a self-addressed, stamped 
envelope in all mailings.    

 Develop a survey instrument that is relatively short, with carefully designed questions and a 
logical flow. 

 
Nonresponse bias can also be addressed at the survey design stage by taking steps, wherever possible, 
that have the potential to minimize the difference between respondents and nonrespondents on the 
measure of interest (i.e., trips to a particular site).  This is typically accomplished by carefully avoiding 
introductory statements or initial signals about the purpose of the survey that might cause individuals’ 
response decisions to be correlated with trips to the site.   For example, if a survey envelope has a 
surfing logo on the outside, individuals who surf will be more likely to open the envelope and respond to 
the survey.  Similarly, if the outside envelope says “Tell us about your trips to the Everglades!” then 
individuals who didn’t visit Everglades National Park would be more likely to discard the envelope.  To 

Excerpt from Introductory Letter for a Survey Designed to Estimate Beach Trips 

The National Park Service is conducting a study in North Carolina to learn about 

residents’ opinions of local beaches and to better understand the types of things that 

people want when they visit these beaches.  The study will provide information that will 

help the Park Service and other government agencies to improve management 

strategies for coastal areas.   
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the extent possible, the initial statements and signals regarding the purpose of the survey should 
provide a broad (while still accurate) description of the survey purpose.     
 

 
Investigating Potential Nonresponse Bias after Completing the Survey  
 
One of the most pernicious aspects of nonresponse bias is that it is nearly impossible to definitively 
determine whether or not it exists.  After all, the key piece of information needed to identify 
nonresponse bias (number of trips taken by nonrespondents) is unavailable by definition whenever 
nonrespondents exist!  Nonetheless, there are several ways to assess the potential for nonresponse bias 
using available information.   
 
Perhaps the most obvious approach to assessing the potential for nonresponse bias is to simply 
compare respondents to nonrespondents using data from the sampling frame.  In a sample of licensed 
anglers, for example, one would typically know the age of both respondents and nonrespondents.  
Suppose the results of an angler survey indicated that younger respondents fished more often than 
older respondents, and suppose an evaluation of the sampling frame data indicated that respondents 
were generally older than nonrespondents.  In this case, all other factors equal, an estimate of fishing 
trips based on the (older) respondent group would clearly be biased downwards.89  Similarly, if we found 
that response rates were higher in zip codes closer to our site of interest, then estimates of trips to the 
site would likely be biased upwards (assuming that individuals living closer to the site have higher 
visitation rates).90   
 
When implementing a general population phone or mail survey, data available from the sampling frame 
is often rather limited.91 With a phone survey, one typically knows whether or not the number is listed in 
the white pages, whether or not the number can be reverse-matched to an address, as well as general 
(i.e., not specific to the household) data on the telephone exchange with which the number is 
associated.  With a mail survey, one of course knows the exact location of every sampled address, and 
one can obtain general census data about the zip code or county.    
 

Example 4.6:  Assessing Potential Nonresponse Bias Using Data from the Sampling Frame  

Suppose we conduct a mail survey of 1,000 licensed anglers in Colorado and achieve a 42 percent 
response rate.  The licensed angler database provides information on age and gender for all sampled 
anglers.  The following table compares respondents and non-respondents with respect to age and 
gender, and it also summarizes the number of trips taken by respondents in various age/gender 
categories.   

                                                           
89 The base sampling weight (the inverse of the respondent’s selection probability) should be used when making 
these comparisons.   
90 When conducting an on-site survey of visitors, field personnel can provide observations about both respondents 
and non-respondents for this type of comparison.  For example, on-site interviewers can record a few basic 
characteristics (e.g., gender, approximate age, type of gear carried) of all sampled visitors entering a park, 
including both respondents and non-respondents.   
91 If the survey is conducted as a panel, then one can take advantage of a wealth of data from the screener survey 
in order to assess nonresponse bias in later waves.   
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 Respondents 
(n = 420) 

Nonrespondents 
(n = 580) 

Average Monthly 
Trips (Respondents) 

Gender    
     Male 62% 89% 5.4 
     Female 38% 11% 3.2 

 100% 100%  
    
Age    
     18 to 29 6% 18% 5.5 
     30 to 49 18% 24% 4.5 
     50 to 69 34% 28% 3.9 
     69+ 42% 30% 3.8 

 100% 100%  

The comparison indicates that female anglers were more likely to respond to the survey (38 percent 
female among respondents versus 11 percent among nonrespondents), yet women fished less often 
than men (3.2 trips per month versus 5.4 trips per month).  In addition, older respondents were more 
likely to respond, yet older anglers fish less often than younger anglers.  Both of these comparisons 
indicate that naïve trip estimates based entirely on unweighted respondent data are likely to understate 
fishing trips taken by licensed anglers.    

 
    
 
 
Although it is certainly informative to compare respondents to nonrespondents using data from the 
sampling frame, we would ultimately like to use the respondents to represent the population, not the 
sample.  As a result, it is preferable when possible to benchmark the survey by comparing the 
characteristics of respondents to those of the entire population.  In some cases, the population data 
may be available from the sampling frame.  In a sample of licensed anglers, for example, a state may 
provide its entire licensed anger database, allowing one to compare responding anglers to all licensed 
anglers with respect to gender, age, license type, county of residence, etc.   
 
More frequently, however, population data are only available from an external source that is completely 
independent of the survey effort.  With general population mail or phone surveys, for example, one 
typically only purchases a sample of phone numbers or residential addresses.  Information about the 
entire sampling frame is typically unavailable.  In these cases, respondents can be compared to census 
data for the relevant geographic area.  As we discussed earlier, these comparisons are only possible if 
the demographic questions in the survey are similar or identical to those in the American Community 
Survey (ACS).  
 
With general population surveys one often finds that respondents tend to be disproportionately female, 
older, more educated, and white.  If the survey is conducted only in English, one will also typically find 
respondents to be disproportionately non-Hispanic.   
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Example 4.7:  Assessing Potential Non-Response Bias Using Census Data  

An address-based sampling (ABS) mail survey of Orange County residents was conducted, achieving a 37 
percent response rate.  The demographic questions included in the survey were similar or identical to 
those in the ACS.  The following table compares survey respondents with 2008-2012 ACS data for 
Orange County.   

 Census (ACS) Survey Respondents 

Gender    

     Male 48.9% 45.8% 

     Female 51.1% 54.2% 

 100.0% 100.0% 

Age    

    18-24 13.4% 4.5% 

    25-34 18.2% 11.6% 

    35-44 19.3% 18.6% 

    45-54 19.4% 21.3% 

    55-64 14.2% 23.9% 

    65+ 15.5% 20.1% 

 100.0% 100.0% 

Education    

    Less than HS graduate 16.4% 1.7% 

    High school graduate 17.9% 7.8% 

    Some college 21.3% 21.9% 

    Associate's degree 7.8% 11.6% 

    Bachelor's degree 23.9% 33.2% 

    Graduate or professional degree 12.7% 23.9% 

 100.0% 100.0% 

Household Income    

    < $10,000 4.1% 2.5% 

    $10,000 to $49,999 28.9% 23.2% 

    $50,000 to $74,999 16.7% 18.9% 

    $75,000 to $99,999 13.4% 13.2% 

    $100,000 to $149,999 18.0% 22.2% 

    $150,000 + 18.9% 20.0% 

 100.0% 100.0% 

Hispanic or Latino   

    Hispanic or Latino 29.4% 15.1% 

    Not Hispanic or Latino 70.6% 84.9% 

 100.0% 100.0% 

Race    

    American Indian or Alaskan Native 0.4% 1.0% 

    Asian 18.1% 16.1% 

    Black or African American 1.6% 1.4% 

    Native Hawaiian or other Pacific Islander 0.3% 1.3% 

    White 62.4% 70.5% 

    Some other race 13.9% 6.1% 

    Two or more races 3.2% 3.6% 

 100.0% 100.0% 
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With regard to standard demographic characteristics, it appears that the survey does reasonably well in 
representing the population distribution of gender, income, and race.  However, the survey under-
represents the young, those with low education levels, and Hispanics.        

 

 

An alternative approach to investigating potential non-response bias is to draw a random sample of 
nonrespondents and use more intensive contact methods (e.g., high monetary incentive, express mail, 
or an alternative survey mode) to obtain survey data from this sample.  The survey could be identical to 
the original survey or it could be a slimmed-down version focusing only on key data elements.  The 
responses from the sample of nonrespondents can then be compared to the initial group of respondents 
in order to assess potential nonresponse bias.  The advantage of this approach is that it doesn’t rely on 
characteristics that may be correlated with trips.  Instead, it goes to the heart of the matter by directly 
obtaining trip data from a sample of nonrespondents.  The primary disadvantages of the approach are 
that (1) the more intensive contact methods are typically quite expensive and (2) even with the 
intensive contact methods many of the sampled nonrespondents will likely continue to fail to respond, 
leading to questions about nonresponse bias at the second stage.    
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RECALL ERROR  
   

Off-site surveys designed to estimate park visitation lean heavily on the respondent’s ability to 
remember trips taken during a specific recall period.  When asked to report trips during this period, 
respondents may try to remember and tally individual trips (episodic enumeration) or they may simply 
multiply a typical trip-taking rate (e.g., one trip per week) by the length of the recall period (rule-based 
enumeration) (Burton and Blair 1991).   
 
When the recall period is lengthy or when the type of trip being tallied is fairly mundane, respondents 
will occasionally report a number of trips that differs from the number they actually took, a 
phenomenon referred to as recall error.  Sudman and Bradburn (1974) describe two processes that lead 
to recall error.  First, respondents tend to telescope trip data, a process whereby trips taken in earlier 
periods are pushed forward in time.92  For example, a trip taken 13 months ago might be reported as 
having occurred within the last 12 months.  Second there is likely to be recall decay, whereby trips taken 
in earlier periods are simply forgotten.   
 
Determining the quantity and direction of recall error is surprisingly difficult.  The problem is that one 
rarely knows the true number of trips taken by any individual, so there is no benchmark against which to 
compare memory-reported trips.  Ideally (at least, disregarding privacy issues), a benchmark could be 
established if a sample of individuals carried a tracking device with them at all times.  Then data from 
the device could be used to count all recreational trips taken within a particular time period, and the 
results could be compared with memory-reported trips.93  As this type of study is unlikely to be 
implemented (at least not in a free society), a second-best approach is required.   
 
Some researchers studying recreational fishing have used diary-type studies to establish a benchmark, 
but the anglers who agree to participate (and who follow through for the entire period) in diary studies 
tend to take more fishing trips than those who don’t (Dorow and Arlinghaus 2011), which makes it 
difficult to compare diary participants with a control group.  However, in a study of recreational 
fishermen in Tasmania, Lyle (1999) was able to achieve extraordinarily high response (over 90 percent) 
and diary completion (97 percent) rates, allowing him to isolate the impact of recall bias when 
comparing diary respondents with 6-month recall telephone respondents.  He found that trip estimates 
based on the 6-month recall period were between 1.5 and 2.3 times higher than the estimates based on 
the diary.   
  
In the 1980s and 1990s, numerous studies compared 12- or 6-month recall surveys to surveys with 
shorter recall periods (e.g., Westat Inc. 1987; Cahoon et al. 1993; Tarrant et al. 1993; Connelly and 
Brown 1995; Lyle 1999; Connelly, Brown and Knuth 2000).  The main impetus behind these efforts was a 
desire to evaluate the potential bias in annual recall studies, which were used quite widely by state 
wildlife agencies at the time, and also by the U.S. Fish and Wildlife Service in its National Survey of 
Fishing, Hunting, and Wildlife Associated Recreation.  Annual recall surveys were found to overestimate 
trips, a conclusion which led to the redesign of the Fish and Wildlife Service’s National Survey (which 
was converted to a four-month recall survey) and several state surveys, including New York’s Statewide 

                                                           
92 Gottfredson and Hindelang (1977) observed a similar phenomenon in the National Crime Victimization Survey 
(NCVS) when survey respondents were asked to report crimes committed against them.   
93 With downhill ski areas, health clubs, or other recreational destinations that require annual passes and that 
monitor attendance at the level of the individual, it would of course be possible to compare electronic attendance 
records with memory-reported trips.   
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Angler Survey (which divided the year into three periods for recall purposes).94,95  The National Marine 
Fisheries Service currently uses a 2-month recall period for its recreational angler surveys.   
  
When a short recall period (e.g., one or two months) is desired, one needs to consider how trip 
estimates will be generated for the entire time period of interest.  Suppose, for example, that an annual 
trip estimate is required, but the recall period will be limited to two months.  One option is to conduct 
the survey using a panel design, where the same individuals are contacted every two months 
throughout the year and asked (on six separate occasions) to report the trips that they took during the 
previous two-month period (Exhibit 4.7).  These panel participants are randomly selected and recruited 
before the year begins.  In order to reduce recall error within the two-month period, the respondents 
are typically sent some type of diary or calendar on which they can record their trips just after they 
occur.  Under this approach, each respondent is contacted up to seven times (once for recruitment and 
six times during the year).  Responses during later time periods often need to be re-weighted to address 
panel attrition, as individuals will drop out of the panel over time, and the characteristics of these drop-
outs typically differ from the characteristics of those who remain in the panel.      
 
A second option is to implement the survey through six independent waves, where the respondents in 
wave 1 are asked about trips taken during the first and second months, an entirely different set of 
respondents in wave 2 are asked about trips taken during the third and fourth months, and so on.  
Under this approach, which is called a repeated cross-section design, each respondent is contacted only 
once.  It is typically much more expensive to implement the study using independent waves, as 
cooperation from six times as many individuals needs to be secured.  However, with independent waves 
there is obviously no attrition, which eliminates the often difficult adjustments to weights that are 
required in panel studies.   
 
Exhibit 4.7: Illustration of Panel versus Repeated Cross Section Approaches to Gathering Trip Data 
 

  Trip Data Collected 

Design 
Respondent 
Group MAY-JUN  JUL-AUG  SEP-OCT 

Panel  
      
Group A      
      

Repeated 
Cross Section  

      
Group B      
Group C      
Group D      
      

       

 

                                                           
94 An exception to this trend was found in a recent study by Connelly and Brown (2011) which compared an annual 
recall phone survey with a 3-phase phone recall survey covering 12 months, finding slightly higher trip estimates 
for the 3-phase survey.   
95 The National Crime Victimization Survey, an ongoing survey funded by the U.S. Bureau of Justice Statistics and 
implemented by the U.S. Census Bureau, uses a six-month recall period when asking respondents about crimes 
committed against them.   
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INCORPORATING CELL PHONES  
  

Over the past two decades, cell phone use has expanded dramatically in the United States (Exhibit 4.8).  
Over 40 percent of all households have abandoned landlines entirely and are now considered “cell-
only.”  At first, survey firms largely ignored this trend and continued to focus exclusively on landline 
numbers when conducting telephone surveys.  The argument was that the slice of the population 
omitted was fairly small, so that the omission of the cell-only group was unlikely to lead to large biases.  
Furthermore, cell phone minutes were expensive and users did not want to use these minutes for 
completing surveys.  
 
Exhibit 4.8: Trends in Phone Ownership in the United States 
 

 
 
        Source: National Health Interview Survey estimates, 2003-2013 (see Blumberg and Luke 2014 as well as  

       similar studies from earlier years).  

 
 
The landscape began to change in the mid to late 2000’s, as the proportion of cell-only households 
continued to grow, the cost of cellular minutes declined, and practitioners began to recognize that cell-
only households were quite different from landline households: they tended to be substantially 
younger, more likely to rent, and more likely to be Hispanic.  Consequently, standard practice for 
telephone surveys evolved towards a dual-frame approach, where both cell and landline sampling 
frames are used.96  Unfortunately, this has tremendously increased the cost and complexity of 
telephone surveys.  Costs have increased because the Telephone Consumer Protection Act prohibits 
survey firms from using automated dialing techniques to call cell phone numbers unless prior permission 
has been granted by the respondent.  Complexity has increased because pooling the results from cell 
phone and landline respondents requires the careful application of sampling weights. 

                                                           
96 An alternative approach to ensuring that cell-only households are adequately represented in a general 
population telephone survey is to draw an address-based sample from the CDSF, send a brief mail screener to all 
sampled households, and request a phone number from each respondent for a follow-up phone interview (see 
e.g., Brick, Williams, and Montaquila (2011) or Montaquila et al. (2013).   
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The difficulty with developing sampling weights for dual frame cell/landline surveys is that the two 
sampling frames overlap: a subset of individuals have both landline and cell numbers.  Thus, the 
selection probability for this overlapping group must address both the probability of being selected into 
the landline sample and the probability of being selected into the cell phone sample.  This is referred to 
as an overlapping dual frame design.   Under this design, survey questions need to be incorporated that 
allow the researcher to identify members of this overlapping group.  That is, one must ask about cell 
phone usage when calling landline numbers, and one must ask about landline usage when calling cell 
phone numbers.   
 
 
 
 
 
 
 
 
 
A further difficulty in calculating weights is that one needs to know the relative size of these three 
groups within the general population so that the relative weights are correctly calculated.  That is, within 
each group, the weights need to be scaled so that the sum of the weights equals the group’s overall 
population size.  National-level estimates are not particularly useful in this regard when conducting a 
local study, as cell coverage and cost varies greatly across geographic regions, leading to vastly different 
rates of cell phone adoption.  Fortunately, the National Health Interview Survey (NHIS) has recently 
provided annual estimates, by state, of the percent of the population that is cell only, landline only, dual 
use, and without phone service.  These estimates have been widely used by survey practitioners in 
developing weights.       
 
One approach to avoiding the overlapping frame issue (and thereby simplifying weight calculations) is to 
explicitly design the survey to eliminate the overlap.  For example, in the cell phone survey, the 
respondent can be asked immediately if he or she has a working landline phone in the household, and 
the survey can be terminated immediately if the response is affirmative.  This is referred to as a 
nonoverlapping dual frame design.  Under this approach, the completed cell phone surveys will only 
characterize the cell-only households, and the landline interviews will characterize the remaining 
households: landline-only and landline/cell households.  The obvious disadvantage of this approach is 
that potentially useful contacts with landline/cell households are terminated, thus increasing costs.      
 
 

Example 4.8:  Developing Weights under a Nonoverlapping Dual Frame Design  

Suppose households are divided into two mutually exclusive strata according to their telephone service:  
(1) landline and cell/landline households and (2) cell-only households.  Landline and cell/landline 
households are defined as households that have at least one landline phone that is used for making and 
receiving calls.  Cell-only households are defined as households with cell phones but without a landline 
phone.  The relative sizes of the two strata within the population can be determined by consulting NHIS 
estimates for the appropriate state (e.g., Blumberg et al. 2011).   
 

Landline 
Only 

Cell 
Only 

Landline
+ Cell 
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 Within Stratum #1, the survey is implemented by drawing a sample of landline phone numbers, 
calling the numbers, and interviewing a randomly-selected adult within each contacted 
household.     

 

 Within Stratum #2, the survey is implemented by drawing a sample of cell phone numbers, 
dialing the numbers by hand, terminating the interview immediately if the respondent indicates 
that his or her household has a working landline telephone (thus avoiding overlap with Stratum 
#1), then completing interviews with the remaining respondents.  We assume that cell phones 
can be treated as personal devices (rather than being shared), so that no within-household 
sampling is required. 

 
After implementing the survey, base weights for respondents in Stratum #1 are calculated by dividing 
the number of adults in the household by the number of landline telephone numbers in the household.  
Because we have assumed that cell phones are personal devices, the base weights for respondents in 
Stratum #2 do not need to reflect the number of adults in the household, and they are all set to one.  
Next, any desired nonresponse adjustments to the base weights (e.g., through the cell weighting 
method) are applied separately to the two strata using data that are available from the sampling frame 
for both respondents and non-respondents.  The data are then post-stratified so that the sum of the 
weights for Stratum #1 and Stratum #2 match the NHIS population estimates for landline households 
and cell-only households, respectively.97  Finally, the two datasets are pooled, and the pooled sample is 
raked to match population controls from the census.98   
 
 
    
 
It is important to note that the above example is only one of several approaches to weighting dual frame 
telephone surveys.  The state-of-the-art is still evolving, and the reader is urged to consult the current 
survey literature for guidance.  The following caveat from the AAPOR Cell Phone Task Force Report 
(AAPOR 2010) is informative:    
  

“…there remain a number of important unknowns and uncertainties about the 
weighting needed to help improve the accuracy of RDD cell phone samples….This is the 
most complex and challenging set of knowledge gaps currently facing U.S. telephone 
researchers who work with data from RDD cell phone samples. Until reliable methods 
have been devised, tested, and refined by the survey research community, researchers 
will have to accept some uncertainty (and possible discomfort) regarding whether a cell 
phone survey data set has been made as accurate as it can be through weighting. A 
particularly troublesome issue here is that there is a dearth of highly accurate 
population parameters to use in weighting cell phone samples of regional, state and 
local areas.”  (AAPOR 2010, pg. 9) 

 
In addition to the application of new weighting approaches, including cell phones in a telephone survey 
requires attention to a number of additional details (AAPOR 2010), including: 

                                                           
97 The NHIS provides estimates of the percentage of households, by state, with various types of telephone service.  
These percentages must be applied to population estimates from the census for the appropriate geographic area.   
98 In national surveys, the pooled data can be raked directly to NHIS demographic data for the two strata.  At the 
state level, however, NHIS only provides population totals.    
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 Safety:  One would expect that cell phone owners would not answer their phone if it were 
dangerous to do so.  Nonetheless, it is important to be certain that the respondent can safely 
complete the survey by incorporating an initial question such as:  “Are you driving, operating 
machinery, or participating in another activity that requires your full attention?”  If the response 
is affirmative, then the call should be quickly terminated.     
 

 Advance Contact and Incentive:  In contrast to landline numbers, it is not possible to match cell 
phone numbers to residential addresses.  As a result, advance letters cannot be mailed to 
sampled cell phone numbers to inform potential respondents about the purpose of the survey.  
Without an advance letter, researchers cannot send a noncontingent incentive prior to phoning 
the respondent.  In lieu of a noncontingent incentive, the interviewer can mention at the 
beginning of the call that a payment will be mailed to the respondent after the survey has been 
completed (i.e., a contingent incentive).   
 

 Geographic Area:  Cell phone owners often do not change numbers when they move.  As a 
result, it is useful to begin the survey with a question designed to screen out individuals living 
outside of the targeted geographic area.  For example, one can simply ask, “What state do you 
live in?” and terminate the interview if the respondent does not live in the state of interest.99  If 
the targeted geographic region does not coincide with state boundaries, the survey can ask for 
the respondent’s zip code.100  Interviewers must also be more sensitive to calling times with cell 
phone surveys, as respondents may have moved to a different time zone.   
 

 Cell Phones Linked to Children:  When children answer the telephone in a traditional landline 
survey, the interviewer asks to speak with an adult, as landlines are typically shared among 
household members.  However, as cell phones are typically treated as personal devices, children 
should be screened out at the beginning of cell phone interviews.  That is, the call should be 
terminated if the phone is associated with a child.    
 

 Privacy:  As cell phone calls can be received in a variety of locations outside the home, the 
respondent may be in a public location when the survey is being conducted.  As a result, 
respondents may be unwilling to discuss private topics such as household income.  However, 
sensitive questions can be designed so that verbal responses do not disclose any information to 
persons near the respondent.  For example, the respondent can simply report the letter or 
number associated with a particular income category.     
 

 Shared Usage:  In circumstances where cell phones are shared among two or more adults within 
the household, respondent selection methods and associated weighting procedures must be 
considered.  Fortunately, shared cell phone usage is becoming less and less common in the U.S., 
so it may reasonable to treat all cell phones as being linked to individuals.   

                                                           
99 This is preferable to directly asking “Do you live in [STATE]?” as respondents may not tell the truth if they 
suspect that they would need to complete an undesirable interview (or alternatively, that they may receive some 
unspecified prize or benefit) if they report that they live in the targeted state.      
100 In some areas of the country, counties are not particularly prominent so that many respondents will not know 
what county they live in.  As a result, it is preferable to ask about the respondent’s zip code when screening for a 
particular geographic area.   
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 Callbacks:  Most cell phones organize information on incoming calls so that an individual can 
quickly see the number of call attempts that originated from a particular number on any given 
day, even if the ringer is turned off.  As a result, survey firms need to carefully consider the 
frequency and timing of callback attempts in order to avoid alienating the respondent as well as 
ethical (and potentially legal) concerns related to harassment.  
 

 Returned Calls:  After receiving a call from an unfamiliar number, cell phone users are more 
likely to attempt to return the call than when contacted on a landline.  As a result, survey firms 
should have the ability to receive calls and complete an interview when a respondent returns a 
call.   
 

 Nonresponse:  Response rates are somewhat lower in cell phone surveys than in landline 
surveys.  There are a number of potential reasons for this.  Many individuals view their cell 
phone as a private device and do not believe that strangers should be dialing their number.  
Many are participating in activities that require their full attention (driving, work, etc.) and 
therefore cannot complete an interview even if they would like to.  Finally, refusal conversions 
are much more difficult with cell phones.  This is due in part to the fact that the same individual 
is likely to answer the phone every time a call is placed to a particular cell phone number.  As a 
result, the opportunity to persuade another family member to receive the call or complete the 
survey does not exist, as it typically would with a landline interview.   
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